Какие науки фундаментальные науки – Фундаментальные и прикладные науки. Классификация наук — КиберПедия

Фундаментальные и прикладные науки — Мегаобучалка

С учетом результата вклада отдельных наук в развитие научного познания все науки подразделяются на фундаментальные и прикладные науки. Первые сильно влияют на наш образ мыслей, вторые — на наш образ жизни.

Фундаментальные науки исследуют самые глубокие элементы, структуры, законы мироздания. В XIX в. было принято называть подобные науки «чисто научными исследованиями», подчеркивая их направленность исключительно на познание мира, изменение нашего образа мыслей. Речь шла о таких науках, как физика, химия и другие естественные науки. Некоторые ученые XIX в. утверждали, что «физика — это соль, а все остальное — ноль». Сегодня такое убеждение является заблуждением: нельзя утверждать, что естественные науки являются фундаментальными, а гуманитарные и технические — опосредованными, зависящими от уровня развития первых. Поэтому термин «фундаментальные науки» целесообразно заменить термином «фундаментальные научные исследования», которые развиваются во всех науках. Например, в области права к фундаментальным исследованиям относится теория государства и права, в которой разрабатываются основные понятия права.

Прикладные науки, или прикладные научные исследования, ставят своей целью использование знаний из области фундаментальных исследований для решения конкретных задач практической жизни людей, т. е. они влияют на наш образ жизни. Например, прикладная математика разрабатывает математические методы для решения задач в проектировании, конструировании конкретных технических объектов. Следует подчеркнуть, что в современной классификации наук учитывается также целевая функция той или иной науки. С учетом этого основания говорят о поисковых научных исследованиях для решения определенной проблемы и задачи. Поисковые научные исследования осуществляют связь между фундаментальными и прикладными исследованиями при решении определенной задачи и проблемы. Понятие фундаментальности включает следующие признаки: глубина исследования, масштаб применения результатов исследования в других науках и функции этих результатов в развитии научного познания в целом.



Одной из первых классификаций естественных наук является классификация, разработанная французским ученым А. М. Ампером (1775—1836). Немецкий химик Ф. Кекуле (1829—1896) также разработал классификацию естественных наук, которая обсуждалась в XIX в. В его классификации основной, базовой наукой выступала механика, т. е. наука о самом простейшем из видов движения — механическом.

 

 

17.РЕВОЛЮЦИЯ В ЕСТЕСТВОЗНАНИИ КОНЦА ХIХ-НАЧАЛА ХХ ВВ. СТАНОВЛЕНИЕ ИДЕЙ И МЕТОДОВ НЕКЛАССИЧЕСКОЙ НАУКИ

Эпоху конца ХIХ-начала ХХ в.открывает глобальная научная революция,связанная со становлением новой неклассической науки.

В эту эпоху происходит своеобразная цепная реакция перемен в различных отраслях знания. Толчком к данным переменам был целый ряд ошеломляющих открытий в физике, разрушивших всю прежнюю картину мира. Сюда относятся открытие делимости атома, электромагнитных волн, радиоактивности, светового давления, введение идеи кванта, создание теории относительности, описание процесса радиоактивного распада. Под воздействием данных открытий разрушались прежние представления о материи и ее строении, свойствах, формах движения и типах закономерностей, о пространстве и времени. Это привело к кризису физики и всего естествознания, являвшегося симптомом более глубокого кризиса метафизических оснований классической науки.

Второй этап революцииначался в середине 20-х гг. ХХ в. и был связан с созданием квантовой механики и сочетанием ее с теорией относительности в новой квантово-релятивистской физической картине мира.

Началом третьего этапа революции было овладение атомной энергией и последующие исследования, с которыми связано зарождение электронно-вычислительных машин и кибернетики. Также в этот период наряду с физикой стали лидировать химия, биология и цикл наук о Земле. Следует также отметить, что с середины ХХ в. наука окончательно слилась с техникой, приведя к современной научно-технической революции.

В процессе всех этих революционных преобразований формировались идеалы и нормы новой неклассической науки.

Они характеризовались отказом от прямолинейности рассуждений, пониманием относительной истинности теорий и картины природы. Осмысливались взаимодействия между основополагающими постулатами науки и характеристиками метода, посредством которого осваивается объект.

Изменяются идеалы и обоснования знания. Вводится при изложении теорий новая система понятий. Новые познавательные идеалы и нормы обеспечивали расширение поля исследуемых объектов, открывая пути к освоению сложных самоорганизующихся систем.

В новой картине мира природа и общество представлялись сложными динамическими системами. Этому способствовало открытие специфики законов микро-, макро– и мегамиров, интенсивное исследование механизмов наследственности с изучением уровней организации жизни, обнаружение кибернетикой общих законов управления и обратной связи. Сформировалось новое отношение к

феномену жизни.Жизнь перестала казаться случайным явлением во Вселенной, а стала рассматриваться как закономерный результат саморазвития материи, также закономерно приведший к возникновению разума.

Картины реальности, вырабатываемые в отдельных науках, на этом этапе еще сохраняли свою самостоятельность, но каждая из них участвовала в формировании представлений, включаемых в общенаучную картину мира.

Радикально видоизменялись философские основания науки.

Развитие новых представлений в физике, биологии, кибернетике видоизменяло смыслы категорий части и целого, причинности, случайности и необходимости, объекта, процесса, состояния и т. д.

 

18. Современная постнеклассическая наука

Постнеклассическая наука формируется в 70-х годах XX в. Этому способствуют революция в хранении и получении знаний (компьютеризация науки), невозможность решить ряд научных задач без комплексного использования знаний различных научных дисциплин, без учета места и роли человека в исследуемых системах. Так, в это время развиваются генные технологии, основанные на методах молекулярной биологии и генетики, которые направлены на конструирование новых, ранее в природе не существовавших генов. На их основе, уже на первых этапах исследования, были получены искусственным путем инсулин, интерферон (защитный белок) и т.д. Основная цель генных технологий — видоизменение ДНК. Работа в этом направлении привела к разработке методов анализа генов и геномов (совокупность генов, содержащихся в одинарном наборе хромосом), а также их синтеза, т.е. конструирование новых генетически модифицированных организмов. Разработан принципиально новый метод, приведший к бурному развитию микробиологии — клонирование.

Внесение эволюционных идей в область химических исследований привело к формированию нового научного направления — эволюционной химии. Так, на основе ее открытий, в частности разработки концепции саморазвития открытых каталитических систем, стало возможным объяснение самопроизвольного (без вмешательства человека) восхожде ния от низших химических систем к высшим.
Наметилось еще большее усиление математизации естествознания, что повлекло увеличение уровня его абстрактности и сложности. Так, например, развитие абстрактных методов в исследованиях физической реальности приводит к созданию, с одной стороны, высокоэффективных теорий, таких как электрослабая теория Салама-Вайнберга, квантовая хромодинамика, «теория Великого Объединения», суперсимметричные теории, а с другой — к так называемому «кризису» физики элементарных частиц. Так, американский физик М. Гутцвиллер в 1994 г. писал: «Несмотря на все обещания, физика элементарных частиц превратилась в кошмар, несмотря на ряд глубоких интуитивных прозрений, которые мы эксплуатировали некоторое время. Неабелевы поля известны 40 лет, кварки наблюдались 25 лет назад, а гармоний открыт 20 лет назад. Но все чудесные идеи привели к моделям, которые зависят от 16 открытых параметров… Мы даже не можем установить прямые соответствия с массами элементарных частиц, поскольку необходимая для этого математика слишком сложна даже для современных компьютеров… Но даже когда я пытаюсь читать некоторые современные научные статьи или слушаю доклады некоторых своих коллег, меня не оставляет следующий вопрос: имеют ли они контакт с реальностью? Разрешите мне в качестве примера привести антиферромагнетизм, который снова популярен после открытия сверхпроводящих медных окислов Сверхизощренные модели антиферромагнетизма были предложены и разработаны чрезвычайно тщательно людьми, которые ни разу не слышали, да и слышать не хотят, о гематите (красный железняк-минерал подкласса простых окислов), или о том, что, как каждый знает, называется ржавым гвоздем».
Развитие вычислительной техники связано с созданием микропроцессоров, которые были положены также в основание создания станков с программным управлением, промышленных роботов, для создания автоматизированных рабочих мест, автоматических систем управления.
Прогресс в 80 — 90-х гг. XX в. развития вычислительной техники был вызван созданием искусственных нейронных сетей, на основе которых разрабатываются и создаются нейрокомпьютеры, обладающие возможностью самообучения в ходе решения наиболее сложных задач. Большой шаг вперед сделан в области решения качественных задач. Так, на основе теории нечетких множеств создаются нечеткие компьютеры, способные решать подобного рода задачи. А внесение человеческого фактора в создание баз данных привело к появлению высокоэффективных экспертных систем, которые составили основу систем искусственного интеллекта.

Поскольку объектом исследования все чаще становятся системы, экспериментирование с которыми невозможно, то важнейшим инструментом научно-исследовательской деятельности выступает математическое моделирование. Его суть в том, что исходный объект изучения заменяется его математической моделью, экспериментирование с которой возможно при помощи программ, разработанных для ЭВМ. В математическом моделировании видятся большие эвристические возможности, так как «математика, точнее математическое моделирование нелинейных систем, начинает нащупывать извне тот класс объектов, для которых существуют мостики между мертвой и живой природой, между самодостраиванием нелинейно эволюционирующих структур и высшими проявлениями творческой интуиции человека»

На базе фундаментальных знаний быстро развиваются сформированные в недрах физики микроэлектроника и наноэлектроника. Электроника — наука о взаимодействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств, используемых для передачи информации. И если в начале XX в. на ее основе было возможно создание электронных ламп, то с 50-х гг. развивается твердотельная электроника (прежде всего полупроводниковая), а с 60-х гг. — микроэлектроника на основе интегральных схем. Развитие последней идет в направлении уменьшения размеров, содержащихся в интегральной схеме элементов до миллиардной доли метра — нанометра (нм), с целью применения при создании космических аппаратов и компьютерной техники.
Еще раз повторим, что все чаще объектами исследования становятся сложные, уникальные, исторически развивающиеся системы, которые характеризуются открытостью и саморазвитием. Среди них такие природные комплексы, в которые включен и сам человек — так называемые «человекоразмерные комплексы»; медико-биологические, экологические, биотехнологические объекты, системы «человек-машина», которые включают в себя информационные системы и системы искусственного интеллекта и т.д. С такими системами осложнено, а иногда и вообще невозможно экспериментирование. Изучение их немыслимо без определения границ возможного вмешательства человека в объект, что связано с решением ряда этических проблем.

Поэтому не случайно на этапе постнеклассической науки преобладающей становится идея синтеза научных знаний — стремление построить общенаучную картину мира на основе принципа универсального эволюционизма, объединяющего в единое целое идеи системного и эволюционного подходов. Концепция универсального эволюционизма базируется на определенной совокупности знаний, полученных в рамках конкретных научных дисциплин (биологии, геологии и т.д.) и вместе с тем включает в свой состав ряд философско-мировоззренческих установок. Часто универсальный, или глобальный, эволюционизм понимают как принцип, обеспечивающий экстраполяцию эволюционных идей на все сферы действительности и рассмотрение неживой, живой и социальной материи как единого универсального эволюционного процесса.
Системный подход внес новое содержание в концепцию эволюционизма, создав возможность рассмотрения систем как самоорганизующихся, носящих открытый характер. Как отмечал академик Никита Николаевич Моисеев, все происходящее в мире можно представить как отбор и существуют два типа механизмов, регулирующих его:
1) адаптационные, под действием которых система не приобретает принципиально новых свойств;
2) бифуркационные, связанные с радикальной перестройкой системы.
Моисеев предложил принцип экономии энтропии, дающий «преимущества» сложным системам перед простыми. Эволюция может быть представлена как переход от одного типа самоорганизующейся системы к другой, более сложной. Идея принципа универсального эволюционизма основана на трех важнейших концептуальных направлениях в науке конца XX в.:

1) теории нестационарной Вселенной;
2) синергетике;
3) теории биологической эволюции и развитой на ее основе концепции биосферы и ноосферы.

Модель расширяющейся Вселенной, существенно изменила представления о мире, включив в научную картину мира идею космической эволюции. Теория расширяющейся Вселенной испытала трудности при попытке объяснить этапы космической эволюции от первовзрыва до мировой секунды после него. Ответы на эти вопросы даны в теории раздувающейся Вселенной, возникшей на стыке космологии и физики элементарных частиц.
В основу теории положена идея «инфляционной фазы» — стадии ускоренного расширения. После колоссального расширения в течение невероятно малого отрезка времени установилась фаза с нарушенной симметрией, что привело к изменению состояния вакуума и рождению огромного числа частиц. Несимметричность Вселенной выражается в преобладании вещества над антивеществом и обосновывается «великим объединением» теории элементарных частиц с моделью раздувающейся Вселенной. На этой основе удалось описать слабые, сильные и электромагнитные взаимодействия при высоких энергиях, а также достичь прогресса в теории сверхплотного вещества. Согласно последней, возникла возможность обнаружить факт, состоящий в том, что при изменении температуры в сверхплотном веществе происходит ряд фазовых переходов, во время которых меняются свойства вещества и свойства элементарных частиц, составляющих это вещество. Подобного рода фазовые переходы должны были происходить при охлаждении расширяющейся Вселенной вскоре после «Большого взрыва». Таким образом, устанавливается взаимосвязь между эволюцией Вселенной и процессом образования элементарных частиц, что дает возможность утверждать — Вселенная может представлять уникальную основу для проверки современных теорий элементарных частиц и их взаимодействий .
Следствием теории раздувающейся Вселенной является положение о существовании множества эволюционно развивающихся вселенных, среди которых, возможно, только наша оказалась способной породить такое многообразие форм организации материи. А возникновение жизни на Земле обосновывается на основе антропного принципа, устанавливающего связь существования человека (как наблюдателя) с физическими параметрами Вселенной и Солнечной системы, а также с универсальными константами взаимодействия и массами элементарных частиц. Данные космологии, полученные в последнее время, дают возможность предположить, что потенциальные возможности возникновения жизни и человеческого разума были заложены уже в начальных стадиях развития Метагалактики, когда формировались численные значения мировых констант, определившие характер дальнейших эволюционных изменений.
Вторым концептуальным положением, лежащим в основе принципа универсального эволюционизма, явилась теория самоорганизации – синергетика. Ее характеризуют, используя следующие ключевые слова: самоорганизация, стихийно-спонтанный структурогенез, нелинейность, открытые системы. Синергетика изучает открытые, т.е. обменивающиеся с внешним миром, веществом, энергией и информацией системы. В синергетической картине мира царит становление, обремененное многовариантностью и необратимостью. Бытие и становление объединяются в одно понятийное гнездо. Время создает или, иначе выражаясь, выполняет конструктивную функцию.
Нелинейность предполагает отказ от ориентаций на однозначность и унифицированность, признание методологии разветвляющегося поиска и вариативного знания.
Понятие синергетики получило широкое распространение в современных научных дискуссиях и исследованиях последних десятилетий в области философии науки и методологии. Сам термин имеет древнегреческое происхождение и означает содействие, соучастие или содействующий, помогающий. Следы его употребления можно найти еще в исихазме — мистическом течении Византии. Наиболее часто он употребляется в контексте научных исследований в значении: согласованное действие, непрерывное сотрудничество, совместное использование.

1973 г. — год выступления немецкого ученого Германа Хакена (род.1927) на первой конференции, посвященной проблемам самоорганизации, положил начало новой дисциплине и считается годом рождения синергетики. Хакен обратил внимание на то, что корпоративные явления наблюдаются в самых разнообразных системах, будь то астрофизические явления, фазовые переходы, гидродинамические неустойчивости, образование циклонов в атмосфере и т.д. В своей классической работе «Синергетика» он отмечал, что во многих дисциплинах, от астрофизики до социологии, мы часто наблюдаем, как кооперация отдельных частей системы приводит к макроскопическим структурам или функциям. Синергетика в ее нынешнем состоянии фокусирует внимание на таких ситуациях, в которых структуры или функции систем переживают драматические изменения на уровне макромасштабов. В частности, ее особо интересует вопрос о том, как именно подсистемы или части производят изменения, всецело обусловленные процессами самоорганизации. Парадоксальным казалось то, что при переходе от неупорядоченного состояния к состоянию порядка все эти системы ведут себя схожим образом.
Хакен объясняет, почему он назвал новую дисциплину синергетикой следующим образом. Во-первых, в ней «исследуется совместное действие многих подсистем… в результате которого на макроскопическом уровне возникает структура и соответствующее функционирование». Во-вторых, она кооперирует усилия различных научных дисциплин для нахождения общих принципов самоорганизации систем. Г. Хакен подчеркнул, что в связи с кризисом узкоспециализированных областей знания информацию необходимо сжать до небольшого числа законов, концепций или идей, а синергетику можно рассматривать как одну из подобных попыток. По мнению ученого, существуют одни и те же принципы самоорганизации различных по своей природе систем, от электронов до людей, а значит, речь должна вестись об общих детерминантах природных и социальных процессов, на нахождение которых и направлена синергетика.
Неоценим вклад в развитие этой науки Ильи Романовича Пригожина (1917-2003) – русско-бельгийского (из семьи русских эмигрантов) ученого, лауреата Нобелевской премии (отметим, что Пригожин как правило термин «синергетика» не использовал). Пригожин на основе своих открытий в области неравновесной термодинамики показал, что в неравновесных открытых системах возможны эффекты, приводящие не к возрастанию энтропии и стремлению термодинамических систем к состоянию равновесного хаоса, а к «самопроизвольному» возникновению упорядоченных структур, к рождению порядка из хаоса. Синергетика изучает когерентное, согласованное состояние процессов самоорганизации в сложных системах различной природы. Для того, чтобы было возможно применение синергетики, изучаемая система должна быть открытой и нелинейной (нелинейность выражается в том, что одни и те же изменения вызывают разные изменения – допустим если взять наше самчувствие, то изменение температуры от 18 до 23 градусов в аудитории, скажется не столь значительно как, допустим изменение от 30 градусов до 35). Система также должна состоять из множества элементов и подсистем (электронов, атомов, молекул, клеток, нейронов, органов, сложных организмов, социальных групп и т.д.), взаимодействие между которыми может быть подвержено лишь малым флуктуациям, незначительным случайным изменениям, и находиться в состоянии нестабильности, т.е. — в неравновесном состоянии.

Синергетика использует математические модели для описания нелинейных процессов самоорганизации. Синергетика устанавливает, какие процессы самоорганизации происходят в природе и обществе, какого типа нелинейные законы управляют этими процессами и при каких условиях, выясняет, на каких стадиях эволюции хаос может играть позитивную роль, а когда он нежелателен и деструктивен.

Однако применение синергетики в исследовании социальных процессов ограничено в некоторых отношениях:
1. Удовлетворительно поняты, с точки зрения синергетики, могут быть только массовые процессы. Поведение личности, мотивы ее деятельности, предпочтения едва ли могут быть объяснены с ее помощью, так как она имеет дело с макросоциальными процессами и общими тенденциями развития общества. Она дает картину макроскопических, социоэкономических событий, где суммированы личностные решения и акты выбора индивидов. Индивид же, как таковой, синергетикой не изучается.

2. Синергетика не учитывает роль сознательного фактора духовной сферы, так как не рассматривает возможность человека прямо и сознательно противодействовать макротенденциям самоорганизации, которые присущи социальным сообществам.

3. При переходе на более высокие уровни организации возрастает количество факторов, которые участвуют в детерминации изучаемого социального события, в то время как синергетика применима к исследованию таких процессов, которые детерминированы небольшим количеством фактов.


офия19. . Наука как социальный институт.

Наука как социальный институт возникла в Западной Европе в XVI—XVII вв. в связи с необходимостью обслуживать нарождающее­ся капиталистическое производство и претендовала на определенную автономию. Само существование науки в качестве социального ин­ститута говорило о том, что в системе общественного разделения тру­да она должна выполнять специфические функции, а именно, отве­чать за производство теоретического знания. Наука как социальный институт включала в себя не только систему знаний и научную дея­тельность, но и систему отношений в науке, научные учреждения и организации.

Понятие «социальный институт» отражает степень закрепленнос­ти того или иного вида человеческой деятельности. Институциональность предполагает формализацию всех типов отношений и переход от неорганизованной деятельности и неформальных отношений по типу соглашений и переговоров к созданию организованных структур, пред­полагающих иерархию, властное регулирование и регламент. В связи с этим говорят о политических, социальных, религиозных институ­тах, а также институте семьи, школы, учреждения.

Однако долгое время институциональный подход не разрабаты­вался в отечественной философии науки. Процесс институциализации науки свидетельствует о ее самостоятельности, об официальном признании роли науки в системе общественного разделения труда, о ее претензиях на участие в распределении материальных и человечес­ких ресурсов.

Наука как социальный институт имеет свою собственную разветв­ленную структуру и использует как когнитивные, так и организаци­онные и моральные ресурсы. В этом качестве она включает в себя следующие компоненты:

1. совокупность знаний и их носителей;

2. наличие специфических познавательных целей и задач;

3. выполнение определенных функций;

4. наличие специфических средств познания и учреждений;

5. выработка форм контроля, экспертизы и оценки научных достижений;

6. уществование определенных санкций.

Развитие институциональных форм научной деятельности пред­полагало выяснение предпосылок процесса институционализации, рас­крытие его содержания и результатов.

Институционализация науки предполагает рассмотрение процесса ее развития с трех сторон:

1) создание различных организационных форм науки, ее внутренней дифференциации и специализации, благодаря чему она выполняет свои функции в обществе;

2) формирование системы ценностей и норм, регулирующих деятельность ученых, обеспечивающих их интеграцию и кооперацию;

3) интеграция науки в культурную и социальную системы индустриального общества, которая при этом оставляет возможность относительной автономизации науки по отношению к обществу и государству.

В античности научные знания растворялись в системах натурфи­лософов, в Средневековье — в практике алхимиков, смешивались либо с религиозными, либо с философскими воззрениями. Важной пред­посылкой становления науки как социального института является на­личие систематического образования подрастающего поколения.

Сама история науки тесно связана с историей университетского образования, имеющего непосредственной задачей не просто переда­чу системы знаний, но и подготовку способных к интеллектуальному труду и к профессиональной научной деятельности людей. Появле­ние университетов датируется XII в., однако в первых университетах господствует религиозная парадигма мировосприятия. Светское вли­яние проникает в университеты лишь спустя 400 лет.

Наука как социальный институт или форма общественного сознания, связанная с производством научно-теоретического знания, представляет собой определенную систему взаимосвязей между научными организациями, членами научного сообщества, систему норм и ценностей. Однако то, что она является институтом, в котором десятки и даже сотни тысяч людей нашли свою профессию, — результат недавнего развития. Только в XX в. профессия ученого становится сравнимой по значению с профессией церковника и законника.

По подсчетам социологов, наукой способны заниматься не более 6-8% населения. Иногда основным и эмпирически очевидным признаком науки считается совмещение исследовательской деятельности и высшего образования. Это весьма резонно в условиях, когда наука превращается в профессиональную деятельность. Научно-исследовательская деятельность признается необходимой и устойчивой социокультурной традицией, без которой нормальное существование и развитие общества невозможно. Наука составляет одно из приоритетных направлений деятельности любого цивилизованного государства

Наука как социальный институт включает в себя прежде всего ученых с их знаниями, квалификацией и опытом; разделение и кооперацию научного труда; четко налаженную и эффективно действующую систему научной информации; научные организации и учреждения, научные школы и сообщества; экспериментальное и лабораторное оборудование и др.

В современных условиях первостепенное значение приобретает процесс оптимальной организации управления наукой и ее развитием

Ведущие фигуры науки — гениальные, талантливые, одаренные, творчески мыслящие ученые-новаторы. Выдающиеся исследователи, одержимые устремлением к новому, стоят у истоков революционных поворотов в развитии науки. Взаимодействие индивидуального, личностного и всеобщего, коллективного в науке — реальное, живое противоречие ее развития.

megaobuchalka.ru

Георгий Иванович Рузавин: Фундаментальные и прикладные исследования в структуре

Введение

С возрастанием значения и усилением роли науки в современном обществе, когда расходы на неё начинают составлять уже заметную часть национального дохода в развитых странах, вопрос об определении места фундаментальных и прикладных исследований приобретает не только чисто теоретическое, но и практическое, социально-экономическое значение. Особую актуальность он имеет для стран социалистического содружества, где развитие науки осуществляется в рамках единого государственного плана, ориентированного на широкое внедрение научных достижений в народное хозяйство.

В ходе современной научно-технической революции всё больше увеличивается доля прикладных исследований и инженерных разработок. Однако такие приложения и разработки, особенно в новых отраслях науки, невозможны без широких поисковых исследований фундаментального характера. Правильное соотношение между фундаментальными и прикладными исследованиями, выяснение наиболее оптимальных пропорций между затратами на эти исследования в конечном итоге должны содействовать ускорению научно-технического прогресса.

Решение указанных задач сопряжено, однако, со многими трудностями, в том числе и методологическими. Легко, конечно, выявить такие направления исследований, которые непосредственно связаны с приложением теоретически уже решённых проблем и результаты которых обещают практический успех. Гораздо труднее выделить те поисковые, фундаментальные исследования, которые хотя и не связаны с сегодняшней практикой, но тем не менее могут не только привести к коренной перестройке в области технологии производства, но и оказать решающее воздействие па развитие многих отраслей научного познания.

Правильный выбор проблем и направлений для научного исследования зависит от множества конкретных факторов, обусловленных как внутренней логикой развития самой науки, так и внешними социально-экономическими и культурными причинами. Однако умелая стратегия руководства наукой, планирования и прогнозирования её развития в немалой степени зависит от того, насколько верно решается вопрос о соотношении между фундаментальными и прикладными исследованиями, в какой мере соблюдается правильная пропорция между ними. Одностороннее стимулирование прикладных отраслей науки или, напротив, чисто теоретических исследований одинаково нежелательны для интересов и общества, и подлинного развития самой науки. Вот почему в последние годы в партийных решениях подчёркивается, что необходимо «всемерно развивать фундаментальные и прикладные научные исследования» 1, и критикуются научные работники, «которые до сих пор заняты делами, в значительной мере оторванными как от непосредственных практических нужд страны, так и от действительных интересов развития фундаментальных отраслей наук» 2.

gtmarket.ru

Фундаментальные и прикладные науки

Стр 1 из 4Следующая ⇒

ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

Концепция – целостная система понятий и принципов, отражающая в своем «теле» один из естественных миров или несколько таких миров.

ЕСТЕСТВОЗНАНИЕ

Понятие естествознания

Естествознание – совокупность наук о природе, взятое как единое целое.

Это определение говорит о естествознании как о совокупности, т.е. множестве наук, изучающих природу, хотя в нем и содержится фраза, что это множество следует рассматривать как единое целое.

К естественным наукам относят физику, химию, биологию, космологию, астрономию, географию, геологию и частично психологию. Кроме того, существует множество наук, возникших на стыке названных ‒ астрофизика, физическая химия, биофизика и т.д.

Задачей естествознания является познание объективных законов природы и содействие их практическому использованию в интересах человека.

Редукционизм и холизм

Одна из проблем науки – проблема редукционизма.

Редукционизм (лат. reductio – уменьшение) – господство аналитического подхода, направляющего мышление на поиск простейших, далее неразложимых элементов.

Редукционизм в науке – это стремление описать более сложные явления языком науки, описывающей менее сложные явления или класс явлений (например, сведение биологии к механике и т.п.).

Редукционизм неизбежен при анализе сложных объектов и явлений. Однако нельзя рассматривать, например, жизнедеятельность организма, сводя все к физике или химии. Но законы физики и химии должны выполняться и для биологических объектов.

В настоящее время достигнуто понимание необходимости целостного –холистического (англ. whole – целый) – взгляда на мир.

Холизм – противоположность редукционизма, присущее современной науке стремление создать обобщенное знание о природе.

Фундаментальные и прикладные науки

Установившееся понимание фундаментальной и прикладной науки состоит в следующем. Проблемы, которые ставятся перед учеными извне, называются прикладными. Прикладные науки, таким образом, имеют своей целью осуществление практического применения добытого знания. Проблемы, возникающие внутри самой науки, называются фундаментальными. Таким образом, фундаментальная наука направлена на получение самого знания о мире как такового. Не следует слово «фундаментальный» смешивать здесь со словом «большой», «важный». Прикладное исследование может иметь очень большое значение как для практической деятельности, так и для самой науки, в то время как фундаментальное исследование может оказаться пустяковым.

Естественные и гуманитарные науки

В процессе познания окружающего мира и самого человека формируются различные науки. Естественные науки – науки о природе – формируют естественно-научную культуру, гуманитарные – художественную (гуманитарную) культуру.

На начальных стадиях познания (мифология, натурфилософия) оба этих вида наук и культур не разделялись. Однако постепенно каждая из них разрабатывала свои принципы и подходы. Разделению этих культур способствовали и разные цели: естественные науки стремились изучить природу и покорить ее; гуманитарные своей целью ставили изучение человека и его мира.

Считается, что методы естественных и гуманитарных наук также преимущественно различны: рациональный в естественных и эмоциональный (интуитивный, образный) в гуманитарных. Справедливости ради надо заметить, что резкой границы здесь нет, поскольку элементы интуиции, образного мышления являются неотъемлемыми элементами естественнонаучного постижения мира, а в гуманитарных науках, особенно в таких как история, экономика, социология, нельзя обойтись без рационального, логического метода.

В Античную эпоху преобладало единое, нерасчлененное знание о мире (натурфилософия). Не существовало проблемы разделения естественных и гуманитарных наук и в эпоху Средневековья, хотя в то время уже начался процесс дифференциации научного знания, выделение самостоятельных наук. Тем не менее, для средневекового человека Природа представляла собой мир вещей, за которыми надо стремиться видеть символы Бога, т.е. познание мира было, прежде всего, познанием Божественной Мудрости.

В эпоху Нового времени (XVII – XVIII вв.) началось исключительно быстрое развитие естествознания, сопровождавшееся процессом дифференциации наук. Успехи естествознания были настолько велики, что в обществе возникло представление об их всесильности. Мнения и возражения представителей гуманитарного направления зачастую игнорировались. Рациональный, логический метод познания мира стал определяющим. Позже наметился своего рода раскол между гуманитарной и естественнонаучной культурой.

Этапы познания Природы

История науки свидетельствует о том, что в своем познании Природы, начиная с древних времен, человечество прошло три стадии и вступает в четвертую.

1. На первой стадии сформировались общие синкретические, т.е. нерасчлененные представления об окружающем мире как о чем-то целом. Именно тогда появилась натурфилософия ‒ философия Природы, содержавшая идеи и догадки, ставшие в XIII – XV столетиях зачатками естественных наук. В натурфилософии господствовали методы наблюдения, но не эксперимента. Именно на этом этапе возникли представления о мире как развивающемся из хаоса, эволюционирующем.

2. Вторая стадия – аналитическая – характерна для XV – XVIII веков. На этой стадии происходило мысленное расчленение и выделение частностей, приведшее к возникновению и развитию физики, химии и биологии, а также целого ряда других наук (наряду с издавна существовавшей астрономией). Естественное стремление исследователей ко все более глубокому проникновению в детали разнообразных природных объектов привело к неудержимой дифференциации, т.е. разделению соответствующих наук. Например, химия сначала была разделена на органическую и неорганическую, затем появились физическая, аналитическая химия и т.д. Сегодня этот перечень очень велик. Для аналитической стадии характерно явное преобладание эмпирических (полученных путем опыта, эксперимента) знаний над теоретическими. Важной особенностью аналитической стадии является опережающее, преимущественное исследование предметов Природы по отношению к изучению процессов в Природе. Особенность аналитического периода развития естествознания состоит в том, что сама Природа вплоть до середины XIX века рассматривалась неизменной, окостенелой, вне эволюции.

3. Третья стадия – синтетическая. Постепенно, в течение XIX – XX вв., стало происходить воссоздание целостной картины Природы на основе ранее познанных частностей, т.е. наступила третья, так называемая синтетическая стадия.

4. Ряд исследователей считает, что в наши дни начинает осуществляться четвертая – интегрально-дифференциальная – стадия, на которой рождается действительно единая наука о природе.

Примечательно, что переход к третьей (синтетической) и даже к четвертой (интегрально-дифференциальной) стадиям исследования Природы не исключает проявления всех только что перечисленных особенностей аналитического периода. Более того, процессы дифференциации естественных наук ныне усиливаются, а объем эмпирических исследований резко возрастает. Но как то, так и другое теперь происходит на фоне все более усиливающихся интегративных тенденций и рождения универсальных теорий, стремящихся все бесконечное разнообразие природных явлений вывести из одного или нескольких общетеоретических принципов. Таким образом, строгих границ между аналитической и синтетической стадиями изучения Природы нет.

Научная картина мира

Научная картина мира (НКМ) включает в себя важнейшие достижения науки, создающие определенное понимание мира и места человека в нем. В нее не входят более частные сведения о свойствах различных природных систем, о деталях самого познавательного процесса.

В отличие от строгих теорий, научная картина мира обладает необходимой наглядностью.

Научная картина мира – это особая форма систематизации знаний, преимущественно качественное их обобщение, мировоззренческий синтез различных научных теорий.

В истории науки научные картины мира не оставались неизменными, а сменяли друг друга, таким образом, можно говорить об эволюции научных картин мира. Наиболее наглядной представляется эволюция физических картинмира: натурфилософской – до XVI – XVII вв., механистической – до второй половины XIX в., термодинамической (в рамках механистической теории) в XIX в, релятивистской и квантово-механической в XX веке. На рисунке схематично представлено развитие и смена научных картин мира в физике.

Физические картины Мира

 

Существуют общенаучные картины мира и картины мира с точки зрения отдельных наук, например, физическая, биологическая и т.п.

Первобытное знание

Первобытная культура синкретичная – нерасчлененная. В ней тесно переплетаются познавательная, эстетическая, предметно-практическая и другие виды деятельности. Интересна следующая история. В одной центральноавстралийской пустыне заблудилась группа путешественников-европейцев. Ситуация в тех условиях трагическая. Проводник, абориген, успокоил путешественников: «В этой местности я раньше никогда не был, но знаю ее… песню». Следуя словам песни, он вывел путешественников к источнику. Этот пример ярко иллюстрирует единство науки, искусства и повседневного обыденного опыта.

Мифология

В первобытную эпоху отдельные стороны, аспекты мира обобщались не в понятиях, а в чувственно-конкретных, наглядных образах. Совокупность связанных между собой подобных наглядных образов и представляла собой мифологическую картину мира.

Миф есть способ обобщения мира в форме наглядных образов.

Миф несет в себе не только определенное обобщение и понимание мира, но и переживание мира, некоторое мироощущение.

Первобытный миф не только рассказывался, но и воспроизводился ритуальными действиями: плясками, обрядами, жертвоприношениями. Совершая ритуальные действия, человек поддерживал связь с теми силами (существами), которые сотворили мир.

Мифологическое сознание постепенно преобразовывалось рациональными формами. Переход к научному познанию мира требовал появления качественно новых, по сравнению с мифологическими, представлений о мире. В таком немифологическом мире существуют не антропоморфные, а независимые от людей и Богов процессы.

Милетская школа

Естествознание начинается тогда, когда формулируется вопрос: существует ли за многообразием вещей некое единое начало. Возникновение европейской науки принято связывать с Милетской школой. Ее историческая заслуга состояла в постановке первой и важнейшей естественно-научной проблемы – проблемы первоначала. Представители Милетской школы – Фалес, Анаксимандр, Анаксимен – были одновременно и первыми учеными-естествоиспытателями, и первыми философами.

Фалес Милетский вошел в историю науки и как философ, и как математик, который выдвинул идею математического доказательства. Идея математического доказательства – величайшее достижение древнегреческих мыслителей.

Платон

Платон предположил существование двух реальностей, двух миров. Первый мир – это мир множества единичных, изменяющихся, подвижных вещей, материальный мир, который отражается чувствами человека. Второй мир – это мир вечных, общих и неизменных сущностей, мир общих идей, который постигается разумом.

Идея – это то, что видно разумом в вещи. Это некое конструктивное начало, порождающая модель. Это старые мифологические Боги, переведенные на философский язык. Идея – это некоторое общее понятие, некоторое обобщение.

Никто из Богов и героев не пребывал в мире идей. Мир идей первичен по отношению к миру чувственных вещей. Материальный мир производен от идеального.

Аристотель

Главное возражение Аристотеля направлено против платоновского отрыва идеи вещи от самой вещи. Идеи и чувственные вещи не могут существовать отдельно, в разных мирах. Мир един. Он не распадается на два мира – чувственный и идеальный. Идея существует не где-то в далеких космических далях, а в самих чувственных вещах.

Мир изменчивых природных вещей, как и мир идей, может быть предметом достоверного познания. Все достойно быть предметом познания: и движение светил, и строение живых тел, и устройство полиса. Основу естественно-научных воззрений Аристотеля составляет его учение о материи и форме.

Мир состоит из вещей, каждая отдельная вещь является соединением материи и формы. Материя сама по себе – бесформенное, пассивное начало. Это материал – то, из чего возникает вещь, это субстрат вещи. Чтобы стать вещью, материя должна принять форму – идеальное, конструирующее начало, которое придает вещам конкретность. Как материя, так и форма вечны. Итак, каждая вещь – соединение материи и формы.

Каждый первоэлемент имеет свое место. В центре мира находится элемент Земли. Земля неподвижна и имеет сферическую форму. Вокруг Земли распределена вода, затем воздух, затем огонь. Огонь простирается до орбиты Луны. Выше Луны – надлунный, Божественный мир, в котором царят другие законы. В этом мире все тела состоят из эфира.

В Божественном мире существует лишь один вид движения – равномерное непрерывное круговое движение небесных тел. Небесные тела вращаются вокруг Земли по круговым орбитам. Они прикреплены к сферам, сделанным из эфира. Существуют сферы Луны, Меркурия, Венеры, Солнца, Марса, Юпитера, Сатурна и сфера неподвижных звезд. За ней находится перводвигатель – Бог, который и придает движение сферам. Космос конечен и вечен.

В разных точках пространства и в разных направлениях действуют свои законы. Современная физика строится на принципиально иной основе – на идее однородности и изотропности пространства и времени.

Все механическое движение можно разделить на две большие группы: движение небесных тел в надлунном мире и движение тел в подлунном, земном мире. Движение небесных тел – совершенное движение. Оно представляет собой вращательное равномерное круговое движение или движение, сложенное из подобных движений. У него нет ни начала, ни конца, оно не имеет материальной причины.

Все земные движения несовершенны. Они подвержены изменению, имеют начало и конец. Движение земных тел можно разделить на насильственное и естественное. Естественное движение – это движение тела к своему месту, тяжелого вниз, а легкого вверх. Естественное движение происходит само собой, не требует приложения силы. Насильственное движение требует приложения силы. Любое насильственное движение, даже равномерное и прямолинейное, происходит под действием силы. Закона инерции Аристотель не знал.

ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

Концепция – целостная система понятий и принципов, отражающая в своем «теле» один из естественных миров или несколько таких миров.

ЕСТЕСТВОЗНАНИЕ

Понятие естествознания

Естествознание – совокупность наук о природе, взятое как единое целое.

Это определение говорит о естествознании как о совокупности, т.е. множестве наук, изучающих природу, хотя в нем и содержится фраза, что это множество следует рассматривать как единое целое.

К естественным наукам относят физику, химию, биологию, космологию, астрономию, географию, геологию и частично психологию. Кроме того, существует множество наук, возникших на стыке названных ‒ астрофизика, физическая химия, биофизика и т.д.

Задачей естествознания является познание объективных законов природы и содействие их практическому использованию в интересах человека.

Редукционизм и холизм

Одна из проблем науки – проблема редукционизма.

Редукционизм (лат. reductio – уменьшение) – господство аналитического подхода, направляющего мышление на поиск простейших, далее неразложимых элементов.

Редукционизм в науке – это стремление описать более сложные явления языком науки, описывающей менее сложные явления или класс явлений (например, сведение биологии к механике и т.п.).

Редукционизм неизбежен при анализе сложных объектов и явлений. Однако нельзя рассматривать, например, жизнедеятельность организма, сводя все к физике или химии. Но законы физики и химии должны выполняться и для биологических объектов.

В настоящее время достигнуто понимание необходимости целостного –холистического (англ. whole – целый) – взгляда на мир.

Холизм – противоположность редукционизма, присущее современной науке стремление создать обобщенное знание о природе.

Фундаментальные и прикладные науки

Установившееся понимание фундаментальной и прикладной науки состоит в следующем. Проблемы, которые ставятся перед учеными извне, называются прикладными. Прикладные науки, таким образом, имеют своей целью осуществление практического применения добытого знания. Проблемы, возникающие внутри самой науки, называются фундаментальными. Таким образом, фундаментальная наука направлена на получение самого знания о мире как такового. Не следует слово «фундаментальный» смешивать здесь со словом «большой», «важный». Прикладное исследование может иметь очень большое значение как для практической деятельности, так и для самой науки, в то время как фундаментальное исследование может оказаться пустяковым.




infopedia.su

Фундаментальная и прикладная наука — Записки Летучего/Летающего Медведя — LiveJournal


Начало моей статьи «Замечания о фундаментальной и прикладной науке: физика и металлургия»

Доказывать практическую полезность фундаментальных научных исследований – значит ломиться в открытую дверь. Существует расхожая фраза «Фарадей и Максвелл вдвоем окупили все расходы на фундаментальную науку на триста лет вперед», которая, впрочем, как и любая глубокая истина, обладает (по Бору) тем свойством, что противоположная ей истина тоже является глубокой:

«Бог же творил немало чудес руками Павла…. Даже некоторые из скитающихся иудейских заклинателей стали употреблять над имеющими злых духов имя Господа Иисуса, говоря: «Заклинаю вас Иисусом, которого Павел проповедует». Это делали какие-то семь сынов иудейского первосвященника Скевы. Но злой дух сказал в ответ: «Иисуса знаю, и Павел мне известен, а вы кто?»» (Деяния апостолов 19:11-15).

Чтобы не рисковать нарваться на очевидное «Фарадея знаю, и Максвелл мне ведом, а вы кто?» (хорошо известно, что финансирование научных исследований и по сей день зачастую зависит от злых духов), уместно попытаться проанализировать соотношение фундаментальной науки и ее технических приложений более детально. Нижеследующее представляет собой, разумеется, не науковедческое исследование, а бесхитростные заметки (по принципу «о чем вижу, о том пою») работающего физика, интересующегося, в том числе, и прикладными вопросами.

Вот уже несколько тысячелетий мы живем в «Железном веке», в котором сталь является основным материалом нашей цивилизации. За это время в металлургии накоплен невообразимый практический опыт, главным образом, методом проб и ошибок. Не будет преувеличением сказать, что этот метод до сих пор остается основным, вместе с плохо формализуемой «инженерной интуицией». Такова же, думаю, ситуация и в подавляющем большинстве других практически значимых областей. Прикладная наука занимается, в основном, систематизацией накопленного практического опыта и построением феноменологических методов его описания.

Прежде всего, влияние фундаментальной науки на прикладную сказывается в используемом языке, который, как говорил один из известнейших философов XX века, задает структуру нашего мира:

«То, что мир является моим миром, обнаруживается в том, что границы особого языка (того языка, который мне только и понятен) означают границы моего мира» (Л. Витгенштейн. Логико-философский трактат).

Например, современный металлург вряд ли примет во внимание рекомендации своих предшественников, что определенные технологические операции должны производиться лишь при определенном положении небесных светил: мы сейчас не верим в астрологию (точнее, многие верят, как «частные лица», но никогда не посмеют руководствоваться этой верой в своей профессиональной деятельности; по крайней мере, так было еще лет 20 назад). Вряд ли будет воспринят буквально совет закалять клинок в моче рыжего козленка – такой совет тоже противоречит господствующему научному мировоззрению; да и рыжих козлят, при современных объемах производства, не напасешься.

С другой стороны, все, записанное в математической форме, воспринимается зачастую без должной критичности и самокритичности. Мы больше не варим жаб в полнолуние на перекрестке дорог – мы пишем уравнения. Разумеется, это неспроста. За последние триста лет человечество убедилось, что уравнения сильнее жаб. Как сказал один (крайне несимпатичный) персонаж воннегутовской «Колыбели для кошки», «Наука – это колдовство, которое действует». Общепринятая теперь форма обобщения накопленного практического опыта – графики, числовые таблицы и, если повезет, эмпирические аналитические выражения, связывающие, аллегорически выражаясь, цветовые характеристики козлиной мочи с качеством получаемой продукции.

В то же время, эта подлинная революция в нашем мировоззрении – реакция на дела давно минувших дней, на происходившее в фундаментальной науке XVII-XVIII века (в конце этого периода И. Кант как раз и заявил, что «в каждой науке ровно столько науки, сколько в ней математики»). Естественно, с прагматической точки зрения (грубо говоря, при решении вопросов, кому и на что давать деньги для научной работы) более важно понять о возможных связях между современной фундаментальной и прикладной наукой.

Основная черта современной физики – ее иерархичность и «редукционизм», то есть, стремление выводить свойства макромира исходя из законов микромира. По словам одного из крупнейших физиков второй половины XX века,

«Если бы в результате мировой катастрофы все накопленные научные знания оказались бы уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это атомная гипотеза (можете называть ее не гипотезой, а фактом, но это ничего не меняет): все тела состоят из атомов — маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольшом расстоянии, но отталкиваются, если одно из них плотнее прижать к другому. В этой фразе, как вы убедитесь, содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения» (Фейнмановские лекции по физике).

Это – очень современный взгляд на науку, и в плохом, и в хорошем смысле: с одной стороны, «современный», как появившийся в результате новейшего развития и недавних достижений, но и «современный», как несущий отпечаток предрассудков, свойственных именно нашей эпохе. Еще в XIX веке феноменологический подход торжествовал, и законы термодинамики (имевшие ясные и убедительные экспериментальные подтверждения) считались куда более надежными, чем атомная гипотеза. Программа вывода термодинамики из механики атомов, связанная в основном с именами Л. Больцмана и У. Гиббса, столкнулась с ожесточенным противодействием и решительным непониманием «научного сообщества» (что, возможно, послужило одной из причин самоубийства Больцмана в 1906 году). Неопровержимым физическим аргументом в пользу атомизма оказалась (или показалась) теория броуновского движения, предложенная в 1905 г. А. Эйнштейном и М. Смолуховским, и ее экспериментальное подтверждение Ф. Перреном. Другим важнейшим аргументом в пользу атомизма было открытие элементарного неделимого заряда в опытах Р. Милликена. Интересно, однако, что в проведенных одновременно опытах Эренхафта наблюдались (?) заряды, равные 1/3, 1/5… заряда электрона. Это лишний раз подтверждает, что, вопреки расхожим представлениям, критерием истинности в физике являются не просто результаты экспериментов (которые могут противоречить друг другу), а согласованность научной картины мира в целом (более подробно, см. В.Ю.Ирхин, М.И.Кацнельсон, Уставы небес. Шестнадцать глав о науке и вере, М.: Айрис Пресс, 2004). В настоящее время отдельные атомы можно просто-напросто увидеть с помощью таких устройств как ионный проектор или туннельный микроскоп, так что на уровне физики вопрос об их существовании решен окончательно. Здесь, вероятно, неуместно обсуждать тонкие и нетривиальные философские проблемы, связанные со смыслом слова «существование» применительно к невидимым объектам, и со смыслом слова «увидеть» применительно к данным современных научных экспериментов, использующих сложнейшую аппаратуру, с представлением результата в условных цветах на экране компьютера. В качестве некоторого предостережения «наивным реалистам», можно привести лишь слова А. Эйнштейна «Что можно, а что нельзя наблюдать, зависит от теории, которой вы пользуетесь».

Современная наука основана на предположении, что существует относительно небольшое число фундаментальных законов природы, каждый из которых применим в огромном числе конкретных случаев. Впервые такая идея была реализована в «Математических началах натуральной философии» И. Ньютона. Им были сформулированы «три закона Ньютона» (из которых первые два в действительности были известны ранее и применялись к рассмотрению конкретных проблем Галилеем, Гуком, Гюйгенсом и другими) и закон всемирного тяготения. Величайшее значение «Математических начал…» состоит в разработке общего метода, который позволил выводить из этих законов огромное число ранее известных, а также новых фактов и закономерностей. В частности, Ньютону удалось математически обосновать законы движения планет, открытые ранее Кеплером в результате обработки данных астрономических наблюдений. Тем самым, Ньютон сформулировал идеал для западной науки: все огромное многообразие явлений природы должно объясняться на основе ряда фундаментальных математически формулируемых положений. Сами эти положения менялись в ходе развития науки. В частности, дискуссия о реальности атомов в XIX веке была не о самом этом подходе, а о списке фундаментальных законов: является ли термодинамика столь же фундаментальной, как механика, или может быть выведена из нее. Справедливости ради, отмечу, что в строгом математическом смысле задача вывода второго начала термодинамики из механики не решена до сих пор и, хотя подавляющее большинство физиков полагает, что речь идет о сугубо технических трудностях доказательства (а, скорее, вообще не задумывается об этой проблеме), такой авторитетный ученый как И. Пригожин в конце жизни склонялся к убеждению о необходимости постулирования необратимости на микроуровне.

В конце XIX в. чисто механическую ньютоновскую картину мира сменила электромагнитная теория Максвелла, а в список основных законов природы добавилась система четырех «уравнений Максвелла». В XX в. ньютоновская механика и теория тяготения были заменены в области физики макромира более фундаментальной физической теорией — общей теорией относительности Эйнштейна. Для описания свойств микрообъектов понадобилась квантовая механика со своими законами — уравнение Шредингера в нерелятивистской квантовой механике, уравнение Дирака, описывающее электрон с учетом эффектов теории относительности, принцип тождественности микрочастиц и связанный с ним принцип запрета Паули и т. д. Были открыты новые виды взаимодействий микрочастиц и соответствующие законы, сформулирована (и частично выполнена) программа построения «единой теории поля», на повестке дня стоит объединение квантовой физики и общей теории относительности, однако сам подход не менялся.

Целью стремлений ряда поколений ученых после Ньютона был список, по возможности короткий, самых-самых главных законов — нечто вроде Моисеевых Десяти Заповедей для природы. Правда, более или менее успешно эту программу удавалось реализовать только в области физики. Законы химии (скажем, Периодическая таблица Менделеева, представления о валентности) действуют скорее как тенденции; во всяком случае, количественная точность их предсказаний несопоставима с точностью, с которой работают физические законы, например, закон сохранения заряда (точность 10 в минус двадцатой степени) или принцип эквивалентности инертной и гравитационной массы (точность выше 10 в минус двенадцатой степени). Разумеется, сказанное относится не ко всем законам физики. Английский математик Р. Пенроуз в «Новом разуме императора» выделяет класс «великолепных» (superb) физических теорий, законы которых и имеют такую высокую точность. Это — евклидова геометрия (как физическая теория, описывающая свойства реального пространства), классическая механика (применимая для «обычных» тел, движущихся со скоростями, много меньшими скорости света), теория относительности, квантовая механика и квантовая электродинамика.

Кардинальная идея европейской науки состоит в том, что законы тем точнее и совершеннее, чем они ближе к «основам». Грубо приближенный характер законов химии и биологии, по сравнению с точностью физических теорий класса «superb», принято объяснять их недостаточно фундаментальным характером. Предполагается, что законы химии сводятся к более фундаментальным законам квантовой механики и электродинамики: современные методы расчета электронной структуры в принципе позволяют объяснить все закономерности образования химических соединений из атомов.

Что же

flying-bear.livejournal.com

Фундаментальные и прикладные науки. Технологии

Установившееся понимание фундаментальной и прикладной науки состоит в следующем.

Проблемы, которые ставятся перед учеными извне, называются прикладными. Прикладные науки, таким образом, имеют своей целью осуществление практического применения добытого знания.

Проблемы, возникающие внутри самой науки, называются фундаментальными. Таким образом, фундаментальная наука направлена на получение самого знания о мире как такового. Собственно, именно фундаментальные исследования направлены в той или иной мере на решение мировых загадок.

Не следует, слово «фундаментальный» смешивать здесь со словом «большой», «важный». Прикладное исследование может иметь очень большое значение как для практической деятельности, так и для самой науки, в то время как фундаментальное исследование может оказаться пустяковым. Здесь очень важно предвидеть, какое значение результаты фундаментального  исследования могут иметь в будущем. Так еще в середине 19-го века исследования по электромагнетизму (фундаментальные исследования) считались весьма интересными, но не имеющими никакого практического значения. (При распределении средств на научные исследования руководители, экономисты должны, бесспорно, ориентироваться в определенной мере в современном естествознании, чтобы принять правильное решение).

Технология. Прикладная наука тесно связана с технологией. Можно привести два определения технологии: в узком и широком смысле. «Технология — совокупность знаний о способах и  средствах  проведения производственных  процессов,  напр.  технология  металлов,   химическая   технология, технология строительных работ, биотехнология и т.п., а  также  сами технологические  процессы,  при  которых   происходит качественное изменение обрабатываемого объекта».

В широком, философском  смысле технология – это обусловленные состоянием знаний и общественной эффективностью способы достижения  целей, поставленных обществом». Это определение — достаточно емкое, оно позволяет охватить и биоконструирование, и образование (образовательные технологии),  и  т.п.  Эти «способы» могут меняться от цивилизации к цивилизации, от эпохи к эпохе. (Надо иметь в виду, что в зарубежной литературе «технология» часто понимается как синоним «техники» вообще).

К началу документа

students-library.com

Скажите пожалуйста, какие науки относятся к фундаментальным, а какие к прикладным? Если можно, перечислите!

Фундаментальные науки — это естественные науки (т.е. науки о природе во всех ее проявлениях) — физика, химия, биология, науки о космосе, земле ..<br>к фундаментальным относятся науки на основе которых получили свое развитие прикладные.Например, уравнения Максвелла — это фундаментальная наука, действие законов Максвелла в кристалле кварца — это уже прикладная наука

Фундамент — это математика. Прикладные — химия, физика, информатика, электротехника.

<br>Фундаментальные науки познают природу, а прикладные создают нечто новое, причем исключительно на основе фундаментальных законов природы.<br><br>Пример прикладных наук:<br>Информационные бизнес-технологии<br>Информационные технологии<br>Международный бизнес<br>Технология лесозаготовок<br>

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *