Кипение. Удельная теплота парообразования и конденсации 8 класс онлайн-подготовка на Ростелеком Лицей
Кипение, отличительные черты от процесса испарения
На прошлом уроке мы уже рассмотрели один из видов парообразования – испарение – и выделили свойства этого процесса. Сегодня мы обсудим такой вид парообразования, как процесс кипения, и введем величину, которая численно характеризует процесс парообразования – удельная теплота парообразования и конденсации.
Определение. Кипение (рис. 1) – это процесс интенсивного перехода жидкости в газообразное состояние, сопровождающийся образованием пузырьков пара и происходящий по всему объему жидкости при определенной температуре, которую называют температурой кипения.
Рис. 1. Кипение (Источник)
Описание протекания процесса кипения на примере кипения воды
Сравним два вида парообразования между собой. Процесс кипения более интенсивен, чем процесс испарения. Кроме того, как мы помним, процесс испарения протекает при любой температуре выше температуры плавления, а процесс кипения – строго при определенной температуре, которая является различной для каждого из веществ и называется температурой кипения. Еще следует отметить, что испарение происходит только со свободной поверхности жидкости, т. е. с области, разграничивающей ее с окружающими газами, а кипение – сразу со всего объема.
Более подробно рассмотрим протекание процесса кипения. Представим ситуацию, с которой многие из нас неоднократно сталкивались, – это нагревание и кипячение воды в некотором сосуде, например, в кастрюле. В ходе нагревания воде будет передаваться определенное количество теплоты, что будет приводить к увеличению ее внутренней энергии и увеличению активности движения молекул. Этот процесс будет протекать до определенного этапа, пока энергия движения молекул не станет достаточной для начала кипения.
В воде присутствуют растворенные газы (или другие примеси), которые выделяются в ее структуре, что приводит к так называемому возникновению центров парообразования. Т. е. именно в этих центрах начинает происходить выделение пара, и по всему объему воды образовываются пузырьки, которые наблюдаются при кипении. Важно понимать, что в этих пузырьках находится не воздух, а именно пар, который образовывается в процессе кипения. После образования пузырьков количество пара в них растет, и они начинают увеличиваться в размерах. Зачастую, изначально пузырьки образуются вблизи стенок сосуда и не сразу поднимаются на поверхность; сначала они, увеличиваясь в размерах, оказываются под воздействием нарастающей силы Архимеда, а затем отрываются от стенки и поднимаются на поверхность, где лопаются и высвобождают порцию пара.
Стоит отметить, что далеко не сразу все пузырьки пара достигают свободной поверхности воды. В начале процесса кипения вода прогрета еще далеко не равномерно и нижние слои, вблизи которых происходит непосредственно процесс теплопередачи, еще горячее верхних, даже с учетом процесса конвекции. Это приводит к тому, что поднимающиеся снизу пузырьки пара схлопываются из-за явления поверхностного натяжения, еще не доходя до свободной поверхности воды. При этом пар, который находился внутри пузырьков, переходит в воду, тем самым дополнительно нагревая ее и ускоряя процесс равномерного прогрева воды по всему объему. В результате, когда вода прогревается практически равномерно, почти все пузырьки пара начинают достигать поверхности воды и начинается процесс интенсивного парообразования.
Важно выделить тот факт, что температура, при которой проходит процесс кипения, остается неизменной даже в том случае, если увеличивать интенсивность подвода тепла к жидкости. Простыми словами, если в процессе кипения прибавить газ на конфорке, которая разогревает кастрюлю с водой, то это приведет только к увеличению интенсивности кипения, а не к увеличению температуры жидкости. Если углубляться более серьезно в процесс кипения, то стоит отметить, что в воде возникают области, в которых она может быть перегрета выше температуры кипения, но величина такого перегрева, как правило, не превышает одного-пары градусов и незначительна в общем объеме жидкости. Температура кипения воды при нормальном давлении составляет 100°С.
В процессе кипения воды можно заметить, что он сопровождается характерными звуками так называемого бурления. Эти звуки возникают как раз из-за описанного процесса схлопывания пузырьков пара.
Таблица температур кипения веществ и ее зависимость от давления, технологии применения свойств кипения
Процессы кипения других жидкостей протекают аналогичным образом, что и кипение воды. Основное отличие в этих процессах составляют различные температуры кипения веществ, которые при нормальном атмосферном давлении являются уже измеренными табличными величинами. Укажем основные значения этих температур в таблице.
Вещество |
|
Вода |
100 |
Спирт |
78 |
Ртуть |
357 |
Железо |
2860 |
Кислород |
–183 |
Водород |
–253 |
Интересен тот факт, что температура кипения жидкостей зависит от величины атмосферного давления, поэтому мы и указывали, что все значения в таблице приведены при нормальном атмосферном давлении. При возрастании давления воздуха возрастает и температура кипения жидкости, при уменьшении, наоборот, уменьшается.
На этой зависимости температуры кипения от давления окружающей среды основан принцип работы такого известного кухонного прибора, как скороварка (рис. 2). Она представляет собой кастрюлю с плотно закрывающейся крышкой, под которой в процессе парообразования воды давление воздуха с паром достигает значения до 2 атмосферных давлений, что приводит к увеличению температуры кипения воды в ней до . Из-за этого вода с продуктами в ней имеют возможность нагреться до температуры выше, чем обычно (), и процесс приготовления ускоряется. Из-за такого эффекта устройство и получило свое название.
Рис. 2. Скороварка (Источник)
Ситуация с уменьшением температуры кипения жидкости с понижением атмосферного давления также имеет пример из жизни, но уже не повседневной для многих людей. Относится такой пример к путешествиям альпинистов в высокогорных районах. Оказывается, что в местности, находящейся на высоте 3000–5000 м, температура кипения воды из-за уменьшения атмосферного давления снижается до и более низких значений, что приводит к сложностям при приготовлении пищи в походах, т. к. для эффективной термической обработки продуктов в таком случае требуется значительно большее время, чем при нормальных условиях. На высотах около 7000 м температура кипения воды доходит до , что приводит к невозможности приготовления многих продуктов в таких условиях.
На том, что температуры кипения различных веществ отличаются, основаны некоторые технологии разделения веществ. Например, если рассматривать нагревание нефти, которая представляет собой сложную жидкость, состоящую из множества компонентов, то в процессе кипения ее можно будет разделить на несколько различных веществ. В данном случае, благодаря тому, что температуры кипения керосина, бензина, лигроина и мазута различны, их можно отделить друг от друга путем парообразования и конденсации при различных температурах. Такой процесс, как правило, называют разделением на фракции (рис. 3).
Рис. 3. Разделение нефти на фракции (Источник)
Удельная теплота парообразования и конденсации
Как и любой физический процесс, кипение необходимо характеризовать с помощью какой-то численной величины, такую величину называют удельной теплотой парообразования.
Для того чтобы понять физический смысл этой величины, рассмотрим следующий пример: возьмем 1 кг воды и доведем ее до температуры кипения, затем замерим, какое количество теплоты необходимо для того, чтобы полностью испарить эту воду (без учета тепловых потерь) – эта величина и будет равна удельной теплоте парообразования воды. Для другого вещества это значение теплоты будет другим и будет являться удельной теплотой парообразования этого вещества.
Удельная теплота парообразования оказывается очень важной характеристикой в современных технологиях производства металлов. Оказывается, что, например, при плавлении и испарении железа с его последующей конденсацией и затвердеванием образуется кристаллическая решетка с такой структурой, которая обеспечивает более высокую прочность, чем исходный образец.
Обозначение: удельная теплота парообразования и конденсации (иногда обозначается ).
Единица измерения: .
Удельная теплота парообразования веществ определяется с помощью экспериментов в лабораторных условиях, и ее значения для основных веществ занесены в соответствующую таблицу.
Вещество |
|
Вода |
|
Спирт |
|
Ртуть |
|
Воздух (жидкий) |
Если известно, что вещество находится при температуре кипения, то для вычисления количества теплоты, необходимого для превращения его в газообразное состояние используют следующую формулу:
Обозначения:
количество теплоты парообразования, Дж;
удельная теплота парообразования и конденсации, ;
масса вещества, кг.
В случае рассмотрения процесса конденсации вещества формула, описывающая количество теплоты, остается такой же, но берется со знаком минус, что подчеркивает выделение тепла в процессе конденсации, в отличие от поглощения тепла в процессе кипения, однако, зачастую этот минус не учитывается, если находится модуль количества теплоты.
На следующем уроке мы уделим внимание решению задач.
Список литературы
- Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. – М.: Мнемозина.
- Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
- Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. – М.: Просвещение.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Классная физика (Источник)
- YouTube (Источник)
- YouTube (Источник)
- YouTube (Источник)
Домашнее задание
- Стр. 45: вопросы № 1–3; стр. 51: вопросы № 1–5, упражнение № 10. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
- Какое количество теплоты нужно затратить для превращения в пар 100 г воды, 50 г спирта, 12 г эфира? Жидкости находятся при температуре кипения.
- Любое кипение одновременно является парообразованием, а всякое ли парообразование является кипением? Какое явление встречается чаще?
- В кастрюлю налито 2 л воды при температуре . После закипания в кастрюле оказалось на 200 г меньше воды, чем в начале нагревания. Сколько тепла получила вода в кастрюле?
- В открытой кастрюле с гладкими стенками и дном можно, осторожно нагревая, довести чистую воду (без крупинок и растворенного воздуха) до температуры свыше . Но почему вода не закипает?
Вода в жизни природы и человека
Вода, у тебя нет цвета, нет вкуса, нет запаха,
тебя невозможно описать, люди тобою наслаждаются,
при этом не ведая, что ты есть такое..
Нельзя сказать, что ты необходима для жизни —
ты есть сама жизнь.
(Антуан де Сент-Экзюпери)
Все ли мы знаем о таком привычном для нас веществе, которое всегда и в природе, и в быту сопровождает нас?
Вода — самое распространенное на Земле вещество, она занимает более 70% площади поверхности земли, и только около 30% приходится на долю суши. Вода придает Земле тот неповторимый вид, который отличает ее от других планет Солнечной системы.
С древности люди поклонялись воде и обожествляли, об этом можно посмотреть в фильме «Великая тайна воды». Видео 22.
В философии древних греков отражалось глубокое понимание значения воды во всех явлениях природы и в жизни человека. Так, Фалес Милетский, великий древнегреческий философ и математик, живший в 6-7 в.в. до н.э., высказал гениальную догадку, что вода — первооснова всего на Земле. Современная наука, в том числе экология, полностью подтвердила это. Вода — непременная составная часть всего живого, она играет первостепенную роль в жизни всех живых существ, в том числе человека.Как утверждают ученые, жизнь на Земле впервые появилась в воде, а лишь потом распространилась на сушу/ Свою зависимость от воды наземные организмы сохранили в ходе эволюции в течение многих миллионов лет.
Как Вы думаете, сколько времени может прожить человек без пищи, а сколько — без воды?
Вода обеспечивает доставку питательных веществ и кислорода ко всем клеткам тела, защиту и буферизацию жизненно важных органов, регуляцию температуры тела, помогает в преобразовании пищи в энергию, усвоении питательных веществ органами, вывод шлаков и отходов в процессе жизнедеятельности и выполнение целого ряда других функций. Видео 23.
Попробуйте подышать на холодное стекло. Что Вы увидите? Пары воды, которую Вы выдохнули, сконденсировались на холодном стекле, превратились в жидкую воду. Откуда эта вода взялась в нашем организме?
Не будем забывать, что вода — среда обитания огромного числа живых организмов, отличающихся друг от друга и определяющих различные свойства вод океанов, морей, озер, рек и болот.
Почему воду справедливо называют чудом природы?
Что знает о воде современная наука?
Несмотря на широкую распространенность и доступность вода все еще остается непознанным до конца веществом. Ежегодно публикуются новые работы по исследованию свойств воды, и она не перестает удивлять ученых. Без преувеличения можно сказать, что среди необозримого множества природных веществ вода является одним из самых необыкновенных. Она обладает целым рядом физических и химических свойств, которые называют уникальными или аномальными. Эти свойства воды обеспечивают протекание многих природных процессов и существование жизни на Земле в целом. Видео 24.
Необычными свойства воды кажутся по сравнению с жидкостями. Но ученые установили, что жидкая вода имеет структуру, так как ее молекулы способны сцепляться, образовывая межмолекулярные связи, которые очень легко разрываются. То есть можно сказать, что жидкая вода является полимером! Связями между молекулами воды объясняются многие ее необычные свойства. Например, для кипячения воды необходимо затратить много энергии, которая тратится на разрыв этих связей.«Аномальные» температуры кипения, а также замерзания воды обусловливают способность воды находиться в природе в трех агрегатных состояниях (жидком, твердом и газообразном). На планете нет другого вещества, которое находились бы в трех агрегатных состояниях.
Приходилось ли Вам видеть воду в природе одновременно в двух или даже в трех агрегатных состояниях? Где?
Это приводит к тому, что водная оболочка Земли (гидросфера) и, соответственно, жизнь на планете практически не прерывается на поверхности планеты, все ее компоненты объединяются в единое целое благодаря воде. Если представить, что вода обладала бы «нормальной» температурой кипения, то она бы закипала при температуре минут 70 градусов.
В каком состоянии она находилась бы в условиях существующего на Земле температурного режима? И где бы в таком фантастическом мире могли бы возникать водоемы?
Для жизни на Земле также чрезвычайно важным является такое свойство воды, как ее высокая теплоемкость, Теплоемкость - количество теплоты, поглощаемой телом при нагревании на 1 градус.
она определяет стабильность температурного режима на планете. Для того чтобы нагреть какую-то массу воды на 1 градус, требуется гораздо больше тепла, чем для того, чтобы произвести нагревание на 1 градус такой же массы любого другого вещества. Благодаря исключительно высокой термической инертности воды Мировой океан, а также многочисленные водоемы суши как нельзя лучше выполняют роль гигантского планетарного терморегулятора, сглаживающего суточные и сезонные перепады температуры. В дневное время, а также летом, водные массы медленно нагреваются, поглощая при этом много тепла, что не позволяет воздуху разогреваться очень сильно. По ночам и в зимние периоды, наоборот, водные массы медленно остывают, выделяя накопленное ранее тепло, что не позволяет воздуху чрезмерно остывать.
Как Вы думаете, какой был бы климат на Земле, если бы вода не обладала такой высокой теплоемкостью?
Еще одним замечательным свойством воды является ее исключительно высокая растворяющая способность, она — универсальный растворитель огромного количества химических веществ, среда, в которой протекают все процессы жизнедеятельности.
Существуют и другие важные для природы «аномальные» свойства воды, такие какочень большая способность к капиллярному движению, Под капиллярным движением воды в грунтах понимается их способность поднимать воду по капиллярным порам снизу вверх или в стороны вследствие воздействия капиллярных сил, которые возникают на границах раздела различных компонент грунта. В их основе лежат силы взаимодействия воды и воздуха с твердыми частицами грунта, проявляющиеся в смачивании последних и в других явлениях.
высокое поверхностное натяжение См.: http://theoryandpractice.ru/posts/1012-chto-takoe-poverkhnostnoe-natyazhenie-i-pochemu-vodomerki-ne-tonut
.
Поверхностная пленка воды является для многих водных организмов опорой для движения
А какое колоссальное значение имеет«необычное» увеличение плотности воды при нагревании в диапазоне температур от 0 до 4 градусов! Плотность практически всех веществ уменьшается при нагревании во всем диапазоне температур. Однако плотность воды при нагревании от 0 градусов до 4 градусов возрастает. Это связано с тем, что, как мы уж говорили, вода является структурированной жидкостью, и в этом интервале имеющиеся в структуре льда полости заполняются молекулами воды. Далее от 4 градусов до 100 градусов вода ведет себя «нормально» — т.е. ее плотность при нагревании уменьшается. Видео 25.
Как Вы думаете, как это свойство воды сказывается на жизни водоемов в холодное время года? Почему в них возможна жизнь зимой?
Если бы любое из названных свойств воды каким-то невероятным способом стало «нормальным», то это имело бы самые серьезные последствия для всего происходящего на поверхности планеты. О жизни капли воды со времени ее образования на Земле и до наших дней можно написать самую удивительную и увлекательную повесть. Вместе с миллионами других капель эта капля точила и растворяла горы, в виде кристаллов льда она тысячи лет хранилась в высокогорных ледниках, совершила не одно кругосветное путешествие вместе с морскими течениями, затопляла села и города во время наводнений, плавала в облаках над океанами и морями, разбивала корабли о прибрежные скалы, насыщала влагой травы, кусты и деревья; каплей росы она сверкала в душистых лепестках розы, взращивала посевы, излечивала больного человека и несла жизнь в пустыне утомленному путнику. Посмотрите фильм «Приключения капельки воды», из него Вы узнаете много увлекательных фактов про воду. Какими путями движется вода на Земле? Как осуществляется ее круговорот?
Земля представляет собой шар, окутанный водяными парами и хотя неравномерно, но щедро смоченный и пропитанный водой. Энергия Солнца поднимает воду в виде водяных паров вверх, охлаждается, конденсируется, затем сила тяжести увлекает ее вниз. Благодаря этим двум силам вода на Земле находится в непрерывном движении. Остановить движение воды — это значит превратить Землю в безжизненное космическое тело. Видео 26.
Полная смена воды в атмосфере происходит очень быстро, приблизительно через каждые 9 дней, речная вода меняется в среднем 20 раз в году, а для полной смены подземных вод требуется по меньшей мере 8 тыс. лет.
За последнее время в естественный круговорот воды на Земле вторгся человек. Использование человеком воды достигло таких размеров, что стало оказывать заметное влияние на скорость круговорота и количество воды в его отдельных звеньях. То есть безответственная деятельность человека на планете оказывает влияние даже на такой глобальный природный процесс, как круговорот воды на планете.
Сделаем вывод. Вода благодаря своим поистине уникальным свойствам является одним из важнейших факторов жизнеобеспечения на Планете. Наша жизнь полностью зависит от воды.
Сколько нужно воды человеку и насколько важна ее экономия? Об этом мы поговорим в следующей теме.
Предыдущая глава
Глобальные проблемы загрязнения атмосферы
Следующая глава
Много ли воды нужно человеку
Как это может помочь вашему здоровью?
Питьевая вода, горячая или холодная, сохраняет ваше тело здоровым и гидратированным.
Некоторые люди утверждают, что горячая вода может помочь улучшить пищеварение, уменьшить заложенность носа и даже способствовать расслаблению по сравнению с употреблением холодной воды.
Большинство преимуществ горячей воды для здоровья основаны на отдельных сообщениях, поскольку научных исследований в этой области мало. Тем не менее, многие люди чувствуют пользу от этого средства, особенно утром или прямо перед сном.
Исследования рекомендуют пить горячие напитки при оптимальной температуре от 130 до 160°F (от 54 до 71°C). Температуры выше этого могут вызвать ожоги или ошпаривания.
Для дополнительного укрепления здоровья и получения витамина С попробуйте добавить дольку лимона в горячую воду, чтобы приготовить лимонную воду.
В этой статье рассматриваются 10 способов, которыми горячая вода может принести вам пользу.
Чашка горячей воды создает пар. Держа чашку с горячей водой и глубоко вдыхая этот нежный пар, можно ослабить закупорку носовых пазух и даже облегчить головную боль при носовых пазухах.
Поскольку у вас есть слизистые оболочки пазух носа и горла, питье горячей воды может помочь согреть эту область и успокоить боль в горле, вызванную скоплением слизи.
Согласно более раннему исследованию 2008 года, горячий напиток, такой как чай, обеспечивает быстрое и длительное облегчение от насморка, кашля, боли в горле и усталости. Горячий напиток оказался более эффективным, чем такой же напиток комнатной температуры.
Питьевая вода помогает поддерживать работу пищеварительной системы. По мере того, как вода проходит через желудок и кишечник, организм лучше выводит отходы.
Некоторые считают, что горячая вода особенно эффективна для активации пищеварительной системы.
Теория состоит в том, что горячая вода может также растворять и рассеивать пищу, которую вы съели, и которую ваш организм не смог переварить.
Необходимы дополнительные исследования, чтобы доказать это преимущество, хотя исследование 2016 года показало, что теплая вода может благоприятно влиять на перистальтику кишечника и выделение газов после операции.
Тем временем, если вы чувствуете, что питье горячей воды помогает вашему пищеварению, нет ничего плохого в том, чтобы использовать это как лекарство.
Недостаточное потребление воды, горячей или холодной, может негативно сказаться на функционировании нервной системы, в конечном итоге влияя на настроение и работу мозга.
Исследования 2019 года показали, что питьевая вода может улучшить деятельность центральной нервной системы, а также настроение.
Это исследование показало, что питьевая вода повышала активность мозга участников во время сложных занятий, а также уменьшала их беспокойство.
Обезвоживание является частой причиной запоров. Во многих случаях питьевая вода является эффективным средством для облегчения и предотвращения запоров. Поддержание водного баланса помогает смягчить стул и облегчает его отхождение.
Регулярное употребление горячей воды может способствовать регулярному опорожнению кишечника.
Хотя некоторые данные показывают, что прохладная вода лучше всего подходит для регидратации, питьевая вода любой температуры поможет вам избежать обезвоживания
Институт медицины рекомендует женщинам выпивать 78 унций (2,3 литра) воды в день, а мужчинам – 112 унций. (3,3 литра) в день. Эти цифры включают воду из таких продуктов, как фрукты, овощи и все, что тает.
Вам также требуется гораздо больше воды, если вы беременны или кормите грудью, занимаетесь напряженной деятельностью или работаете в жарких условиях.
Попробуйте начать день с порции горячей воды, а закончить ее еще одной. Ваше тело нуждается в воде для выполнения практически всех основных функций, поэтому ее значение невозможно переоценить.
Сколько воды вы должны выпивать каждый день? Подробнее здесь.
Исследование, проведенное в 2017 году, показало, что, хотя естественная реакция организма на холод — это озноб, употребление теплых жидкостей может помочь уменьшить дрожь.
Субъекты носили костюмы, в которых циркулировала вода с температурой чуть выше точки замерзания, а затем пили воду разной температуры, в том числе до 126°F (52°C).
Исследователи обнаружили, что быстрое питье горячей воды помогло испытуемым снизить нагрузку на поддержание температуры тела. Исследование отмечает, что это может быть удобно для людей, работающих или тренирующихся в холодных условиях.
Здоровый кровоток влияет на все: от артериального давления до риска сердечно-сосудистых заболеваний.
Принятие теплой ванны помогает вашим органам кровообращения — артериям и венам — расширяться и эффективнее разносить кровь по всему телу.
Питьевая горячая вода может иметь аналогичный эффект. Тем не менее, есть мало исследований, что это эффективно.
В качестве бонуса тепло от питья горячей воды или купания в ночное время может помочь вам расслабиться и подготовиться к спокойному сну.
Поскольку питье горячей воды помогает улучшить функции центральной нервной системы, вы можете в конечном итоге чувствовать себя менее беспокойным, если выпьете ее.
Согласно исследованию 2014 года, употребление меньшего количества воды привело к снижению чувства спокойствия, удовлетворения и положительных эмоций.
Таким образом, поддержание водного баланса может улучшить ваше настроение и уровень релаксации.
Хотя нет убедительных доказательств того, что горячая вода имеет конкретное преимущество в этом отношении, исследование 2020 года показало, что употребление большего количества воды может помочь защитить почки, разбавляя отходы в крови.
По данным Фонда борьбы с артритом, питьевая вода важна для очищения организма. Он также помогает бороться с воспалением, хорошо смазывает суставы и предотвращает подагру.
Ахалазия — это состояние, при котором вашему пищеводу трудно продвигать пищу в желудок.
У людей с ахалазией проблемы с глотанием. Им может казаться, что пища застревает в пищеводе, а не попадает в желудок. Это называется дисфагией.
Исследователи не уверены, почему, но более раннее исследование 2012 года показало, что питье теплой воды может помочь людям с ахалазией легче переваривать пищу.
Слишком горячая питьевая вода может повредить ткань пищевода, обжечь вкусовые рецепторы и обжечь язык. Будьте очень осторожны, когда пьете горячую воду. Пить прохладную, а не горячую воду лучше всего для регидратации.
Однако, как правило, питье горячей воды не оказывает вредного воздействия и безопасно для использования в качестве лечебного средства.
Несмотря на то, что прямых исследований преимуществ горячей воды по сравнению с холодной проведено мало, питье горячей воды считается безопасным и может быть хорошим способом избежать обезвоживания в течение дня.
Легко привыкнуть пить горячую воду. Попробуйте начать свой день со стакана кипяченой воды, оставив ее на некоторое время остыть. Если вы не любитель чая или кофе, попробуйте горячую воду с лимоном.
Добавьте в свой распорядок легкий сеанс растяжки, и вы почувствуете себя более энергичным и подготовленным к предстоящему дню.
Если вам не нравится вкус теплой воды, добавьте в напиток щепотку цитрусовых, например, лимона или лайма, прежде чем пить его.
Выпить теплой воды перед сном — отличный способ расслабиться после напряженного дня. Зная о пользе для здоровья, вы будете спать спокойно.
Реагирование на кипячение воды — информация для специалистов общественного здравоохранения
Приказы и уведомления о кипячении воды часто используются учреждениями здравоохранения и службами питьевого водоснабжения в ответ на условия, создающие возможность биологического загрязнения питьевой воды. Общие причины реакции на кипячение воды включают потерю давления в системе распределения, потерю дезинфекции и другие непредвиденные проблемы с качеством воды. Часто они возникают в результате других событий, таких как прорывы водопровода, сбои в очистке, перебои в подаче электроэнергии, наводнения и другие неблагоприятные погодные условия. 9. Термин «прокручивающееся кипение» облегчает общение и гарантирует, что достигается эффективная температура пастеризации для уничтожения или инактивации патогенов, передающихся через воду. Некоторые агентства рекомендуют кипячение в течение более длительного времени, но это дополнительное время не является необходимым и может привести к ненужному потреблению энергии и увеличить проблемы с безопасностью.
Поскольку некоторые пользователи (например, лица с ослабленным иммунитетом) могут быть более восприимчивы к заболеваниям, вызываемым переносимыми через воду патогенами, должностные лица органов здравоохранения должны оперативно реагировать на возможные проблемы с качеством воды. Тем не менее, должностные лица общественного здравоохранения также должны осознавать необходимость излишнего беспокойства населения, причинения неоправданных экономических потрясений и подрыва общественного мнения о безопасности водопроводной воды. По возможности следует использовать альтернативные методы решения проблем с качеством воды, такие как изоляция проблемной воды и открытие взаимосвязей с соседними системами, чтобы избежать ненужных реакций на кипячение воды. Более конкретные указания по этим шагам и когда может потребоваться кипячение воды, приведены в инструкциях и правилах Департамента.
Реакция на кипячение воды НЕ подходит при наличии химического загрязнения. Это может увеличить воздействие химических веществ, таких как нитраты и растворители, за счет концентрации в кипяченой воде или испарения в зоне дыхания. Кипячение воды также НЕ подходит для борьбы с грубыми уровнями загрязнения (например, неочищенные сточные воды или высокая мутность), когда твердые частицы могут снизить эффективность кипячения. В этих условиях необходимо использовать альтернативные источники воды.
ПАТОГЕНЫ, ПЕРЕДАВАЕМЫЕ ВОДОЙ
Существует множество болезнетворных организмов, которым потребители могут подвергнуться воздействию через проглатывание и контакт с зараженной питьевой водой. Наиболее распространенными патогенами, которые можно обнаружить в питьевой воде, являются следующие:
Простейшие: Простейшие — это микроорганизмы, которые могут жить в животных, людях и окружающей среде. Многие простейшие имеют стадии жизненного цикла, которые включают цисты и ооцисты. Цисты и ооцисты, как правило, устойчивы к нормальным уровням остаточного хлора, но легче дезактивируются при дезинфекции ультрафиолетом (УФ). Большинство простейших, включая стадии цист и ооцист, удаляются с помощью устройств для фильтрации воды, способных удалять частицы размером 1 микрон (т. е. микрофильтрация). В штате Нью-Йорк болезни, вызываемые видами Giardia, Cryptosporidium, и амебы должны быть доведены до сведения NYSDOH.
Бактерии: Бактерии обычно погибают при нормальном остаточном уровне хлора. Большинство бактерий удаляются с помощью микрофильтрации («<1 микрона»), и большинство из них эффективно дезактивируется ультрафиолетовой (УФ) дезинфекцией, хотя для некоторых видов могут потребоваться повышенные дозы УФ. Бактериальные споры могут быть устойчивы к нормальным уровням дезинфицирующего хлора, а некоторые из них устойчивы к ультрафиолетовому излучению. Мелкие бактерии и споры могут проходить через фильтры на уровне микрофильтрации. Бактерии, которые могут вызывать заболевания, передающиеся через воду, включают кишечная палочка; и виды Salmonella, Vibrio, Shigella, и Camphylobacter.
Вирусы: Вирусы быстро инактивируются нормальным уровнем остаточного хлора. Но их небольшой размер, обычно менее 0,01 микрона, позволяет вирусам проходить через фильтры размером 1 микрон. Кроме того, некоторые вирусы устойчивы к инактивации под воздействием УФ-излучения. Следовательно, обычная фильтрация воды и УФ-дезинфекция не могут обеспечить адекватную очистку от вирусов, а вирусы обычно контролируются с помощью химической дезинфекции. Вирусы, которые могут вызывать заболевания, передающиеся через воду, включают: Гепатит A, аденовирусы, Гепатит E, энтеровирусы (включая вирусы полиомиелита, эха и Коксаки), ротавирусы и калицивирусы.
КИПЯЧЕНИЕ И ПАСТЕРИЗАЦИЯ
Кипячение воды убивает или инактивирует вирусы, бактерии, простейшие и другие патогены, используя тепло для повреждения структурных компонентов и нарушения основных жизненных процессов (например, денатурации белков). Кипячение не является стерилизацией и точнее характеризуется как пастеризация. Стерилизация убивает все присутствующие организмы, а пастеризация убивает те организмы, которые могут причинить вред человеку. Приготовление пищи также является формой пастеризации. Чтобы пастеризация была эффективной, вода или пища должны быть нагреты по крайней мере до температуры пастеризации для вызывающих озабоченность организмов и выдержаны при этой температуре в течение заданного интервала времени.
Эффективность пастеризации напрямую зависит от температуры и времени. Молоко обычно пастеризуют при 149°F/65°C в течение 30 секунд или при 280°F/138°C не менее двух секунд. Исследование эффективности пастеризации молока, преднамеренно зараженного Cryptosporidium , показало, что пять секунд нагревания до 161°F/72°C сделали ооцисты неинфекционными.
Хотя некоторые бактериальные споры, обычно не связанные с болезнями, передающимися через воду, способны выживать при кипячении (например, споры клостридий и бацилл), исследования показывают, что передающиеся через воду патогены инактивируются или погибают при температуре ниже точки кипения (212°F или 100°C). ). Сообщается, что в воде пастеризация начинается при температуре 131°F/55°C для цист простейших. Точно так же сообщается, что одна минута нагревания до 162°/72°C и две минуты нагревания при 144°/62°C сделают ооцисты Cryptosporidium неинфекционными. Другие исследования сообщают, что вода, пастеризованная при температуре 150°F/65°C в течение 20 минут, убивает или инактивирует те микроорганизмы, которые могут причинить вред человеку. К ним относятся: Giardia, Cryptosporidium, Endameba, яйца глистов, холерный вибрион, шигеллы, сальмонеллы бактерии, вызывающие брюшной тиф, энтеротоксигенные штаммы кишечной палочки, гепатит А и ротавирусы. Также сообщается, что 99,999% уничтожение переносимых водой микроорганизмов может быть достигнуто при 149°F/65°C за пять минут воздействия.
Вода будет кипеть при разных температурах в разных условиях (например, более низкие температуры на возвышенностях, более высокие температуры в сосудах под давлением), однако эти различия не являются существенным фактором для реакции кипячения воды. Вода в открытом сосуде будет кипеть при температуре около 212°F/100°C в Нью-Йорке. Даже на вершине горы Марси в штате Нью-Йорк, где высота над уровнем моря превышает одну милю, вода кипит при температуре около 203°F/9.5°C и подходит для дезинфекции воды.
ХИМИЧЕСКАЯ ДЕЗИНФЕКЦИЯ
В случаях, когда кипячение воды невозможно или нецелесообразно, а альтернативные источники воды недоступны, химическая дезинфекция может быть жизнеспособной заменой. Химическая дезинфекция может быть уместна, когда кипячение невозможно из-за перебоев в подаче электроэнергии, а также является подходящим способом подготовки воды для непищевых целей, таких как мытье посуды и личная гигиена. Однако химическая дезинфекция сама по себе может быть не такой эффективной, как кипячение для борьбы с патогенами, в отличие от некоторых простейших, таких как Cryptosporidium в форме кисты устойчивы как к дезинфицирующим средствам на основе хлора, так и к йоду.
Химическая дезинфекция не должна использоваться для получения воды для приема внутрь, когда могут присутствовать высокие уровни загрязнения или высокие уровни простейших или мутность (например, загрязнение неочищенными сточными водами). В этих условиях необходимо использовать альтернативные источники воды для приема внутрь или использования в приготовлении пищи.
Некоторые химические дезинфицирующие средства легко доступны в виде бытовых химикатов (например, обычный хлорный отбеливатель без запаха) или приобретаются в аптеках и магазинах для активного отдыха (например, йодная настойка). Химическая дезинфекция может быть выполнена на месте путем добавления определенного количества химиката на каждый галлон сомнительной воды и выдержки воды в течение достаточного периода времени перед использованием. Если вода очень холодная, ее следует сначала нагреть или увеличить время контакта. Чтобы уменьшить вкус и запах химических дезинфицирующих средств, воду можно аэрировать по истечении времени контакта, переливая ее туда и обратно между парой чистых контейнеров.
Методы дезинфекции с использованием обычных бытовых химикатов можно найти в разделе Дезинфекция водопроводной воды. Для дезинфекции отбеливателем следует использовать обычный отбеливатель без запаха. Отбеливатель с запахом, без разбрызгивания или разбрызгивания не должен использоваться из-за добавок в отбеливателе. Кроме того, обычный отбеливатель без запаха Clorox сертифицирован в соответствии со стандартом 60 Национального фонда санитарии (NSF), который регулирует качество и чистоту химических веществ, используемых для питьевого водоснабжения.
УСТРОЙСТВА ДЛЯ ОБРАБОТКИ ВОДЫ
Многие устройства для очистки воды доступны для использования в домах и коммерческих зданиях, но лишь немногие из них можно считать эффективными для удаления патогенов. Многие из этих устройств практически не влияют на патогены. Неправильно обслуживаемое или игнорируемое очистное устройство может фактически добавить биологическое загрязнение в воду, проходящую через него.
Нецелесообразно оценивать все доступные системы обработки из-за их огромного количества на рынке и патентованного характера некоторых процессов. Следующая информация представлена в качестве общего обзора для специалистов в области общественного здравоохранения.
Установки для очистки в месте использования изготавливаются и устанавливаются для очистки воды для использования в одном месте. Типичными устройствами для точек использования являются кухонные устройства, которые обрабатывают только воду, вытекающую из кухонного крана, или воду, подаваемую в ближайший льдогенератор. Существуют также ручные очистные устройства, такие как кувшины для воды с небольшой встроенной фильтрацией или угольный блок. Устройства, установленные на кухне, не повлияют на потенциальное воздействие загрязнителей воды из раковин в ванных комнатах, душевых кабин, наружных кранов и т. д. Часто системы очистки устанавливаются на части сантехники зданий, например. умягчитель воды на стороне горячей воды, и они также считаются точками использования. Конкретные виды лечения обсуждаются ниже.
Установки очистки на входе применяются там, где вода поступает в дом или коммерческое здание, и устанавливаются для очистки всей воды, используемой в этом месте. Конкретные виды лечения обсуждаются ниже.
Умягчители воды и ионообменные установки — Умягчители воды и другие ионообменные устройства неэффективны для удаления патогенов и никогда не должны использоваться вместо дезинфекции кипячением.
Блоки обработки углерода — Обработка углем обеспечивает эффективное удаление многих химических веществ, но неэффективна для удаления патогенов и не должна использоваться вместо дезинфекции кипячением. Неправильно обслуживаемые углеродные блоки, в частности, могут фактически увеличить биологическое загрязнение воды, которая проходит через них.
Аэраторы — Установки аэрации и окисления часто используются в домах для обработки воды с неприятным вкусом и запахом, например, соединений серы и хлора, а также для контроля вредных минералов, таких как железо и марганец. Аэраторы также используются для удаления радона. Они не обеспечивают контроля патогенов и никогда не должны использоваться вместо дезинфекции кипячением.
Фильтрация с зеленым песком — Установки с зеленым песком представляют собой устройства для химической обработки, предназначенные для удаления неорганических химических веществ путем окисления. Хотя эти устройства называются «фильтрами» и имеют песчаную среду, нельзя полагаться на то, что они удалят патогены, и их никогда не следует использовать вместо дезинфекции кипячением.
Физическая / механическая фильтрация — Физическая фильтрация может эффективно удалять патогены и широко используется для этой цели водоканалами. Обратный осмос — это форма фильтрации, в которой используются специальные мембраны, и которая рассматривается ниже.
Многие устройства для фильтрации воды продаются для домашнего и коммерческого использования. В большинстве доступных фильтровальных блоков используются сменные фильтрующие картриджи или мешки, а в некоторых — мембраны. Способность фильтра удалять болезнетворные микроорганизмы напрямую связана с размером пор в фильтрующем материале, качеством устройства, а также эксплуатацией и обслуживанием устройства. Фильтры, предназначенные для удаления частиц диаметром один микрон (также известный как микрометр или 10-6 метров) или меньше, часто называют микрофильтрами. Фильтры такого размера могут удалять большинство переносимых водой патогенов (простейшие и большинство бактерий), однако вирусы намного меньше одного микрона и не могут быть надлежащим образом удалены микрофильтрами.
Системы общественного водоснабжения, в которых используются картриджные фильтры в штате Нью-Йорк, используют картриджи, рассчитанные на один микрон сторонним поставщиком, и часто используют дезинфицирующее средство на основе хлора для инактивации вирусов. Абсолютная оценка означает, что фильтр удаляет 99,99% частиц номинального размера, а сертификация сторонним поставщиком (например, NSF, WQA или UL) на этот уровень производительности повышает уверенность в производительности, а также качество очистки. оборудование и материалы. Картриджи с номинальным рейтингом или другие рейтинговые критерии, предоставляемые производителями, различаются у каждого производителя и часто не соответствуют этому стандарту.
Обратный осмос. Обратный осмос (RO) представляет собой форму фильтрации, при которой вода под давлением пропускается через специальную мембрану. Поры в мембранах имеют такой размер, что молекулы воды проходят, но удаляются все твердые частицы, а также более крупные молекулы. Фильтры этого типа часто оцениваются по размеру молекул, а не по микронам. Установка обратного осмоса способна удалять все патогены, передающиеся через воду, и может считаться приемлемой заменой дезинфекции кипячением, если она сертифицирована в соответствии со стандартом ANSI/NSF 058 для «Удаления кист», и она находится под контролем и работает сертифицированной очисткой воды. оператор установки или квалифицированный техник-нефролог (например, техник диализа). Однако, поскольку установки обратного осмоса склонны к загрязнению при повышенных уровнях мутности, непрерывная работа во время кипячения воды может быть затруднена без соответствующей предварительной обработки.
Следует отметить, что большинство установок обратного осмоса также оснащены угольными фильтрами предварительной очистки для защиты мембран от хлора и крупных частиц.
ПРЕДВАРИТЕЛЬНАЯ ПОДГОТОВКА
Предварительная подготовка является ключом к эффективному применению кипячения воды в качестве меры защиты общественного здоровья. Чтобы помочь в этом, Бюро охраны водоснабжения подготовило серию контрольных списков и часто задаваемых вопросов (FAQ), которые касаются проблем, возникающих при кипячении воды. Эти документы были подготовлены для различных целевых аудиторий и должны использоваться работниками общественного здравоохранения для ответов на вопросы и в качестве информационных материалов для населения. У некоторых потребителей воды могут возникать проблемы, которые рассматриваются более чем в одном из этих часто задаваемых вопросов (например, больницы, которые также являются предприятиями общественного питания).
Другие дополнительные элементы подготовки, которые могут помочь как коммунальным предприятиям, так и специалистам в области здравоохранения обеспечить эффективное выполнение мер реагирования на кипячение воды, включают:
- Точное определение и картирование зон обслуживания
- Предварительная идентификация критически важных пользователей (например, больницы, школы, детские сады, дома престарелых/дома престарелых, медицинские кабинеты)
- Контактная информация для критически важных пользователей (действительна в нерабочее время/круглосуточно)
- Контактная информация для средств массовой информации (радио, газета, телевидение)
- Аварийные контакты системы водоснабжения (действительны в нерабочее время/круглосуточно)
- Обновленные планы реагирования на чрезвычайные ситуации с водоснабжением
- Контактная информация сертифицированных перевозчиков наливных грузов в этом районе
АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ВОДЫ
Кипячение является наиболее надежным методом дезинфекции питьевой воды, которое население может использовать, и оно должно быть первым вариантом дезинфекции на месте. Однако не всегда возможно или целесообразно кипятить воду. Отключение электроэнергии может привести к тому, что потребители не смогут кипятить воду, а кипячение может оказаться нецелесообразным для удовлетворения некоторых потребностей в воде. Если потребности являются критическими и не могут быть прекращены, могут потребоваться альтернативные источники воды или другие методы дезинфекции. Как правило, воду, используемую населением для питья и приготовления пищи во время кипячения воды, следует получать в следующем порядке предпочтения, в зависимости от масштаба пострадавшего района и конкретных условий происшествия:
- Кипяченая (и затем охлажденная) водопроводная вода
- Вода в бутылках (сертифицирована для продажи в Нью-Йорке)
- Альтернативный водопровод общего пользования (вода из другого водопровода общего пользования, который не работает в соответствии с уведомлением о кипячении воды)
- Водоснабжение наливом, организованное водоканалом или агентством по чрезвычайным ситуациям
- Химическая дезинфекция воды на месте
Придорожные родники не являются надежным источником безопасной питьевой воды, так как они редко контролируются, и никто не отвечает за их безопасность. Придорожную родниковую воду, которая используется для питья или приготовления пищи, перед употреблением следует кипятить (а затем охлаждать).
Химическая дезинфекция имеет ограниченную эффективность и не подходит для очень мутной (мутной) воды, а также при наличии неочищенных сточных вод или других фекалий. В этом случае используйте только альтернативный источник воды. Химическая дезинфекция более подробно обсуждалась в предыдущем разделе.
ВОССТАНОВЛЕНИЕ
После завершения реагирования на кипячение воды часто упускают из виду действия по восстановлению, необходимые в местах расположения потребителей. Загрязненная вода может оставаться в водопроводных трубах, резервуарах, льдогенераторах и другом оборудовании и вызывать у потребителей заболевания. Потребителям должна быть предоставлена информация о необходимости промывки и/или дезинфекции труб, резервуаров и оборудования. Единый набор рекомендаций по промывке или дезинфекции не может применяться ко всем пользователям, однако в Департаменте доступны контрольные списки и информационные бюллетени, которые помогут потребителям выполнить последние защитные меры, необходимые для обеспечения возврата к питьевой воде.
ССЫЛКИ
1. Ciochetti, D.A., and R.H. Metcalf. 1984. Пастеризация естественно загрязненной воды с помощью солнечной энергии. заявл. Окружающая среда. микробиол. 47:223-228[Аннотация/Бесплатный полный текст].
2. Fayer, R. 1994. Влияние высокой температуры на инфекционность ооцист Cryptosporidium parvum в воде. заявл. Окружающая среда. микробиол. 60:2732-2735
3. Харп, Дж. А., Р. Файер, Б. А. Пеш и Г. Дж. Джексон. 1996. Влияние пастеризации на инфекционность Cryptosporidium parvum ооцисты в воде и молоке. заявл. Окружающая среда. микробиол. 62:2866-2868
4. Metcalf, R.H. 1995. Неопубликованные данные.
5. Департамент здравоохранения штата Нью-Йорк, Центр гигиены окружающей среды. Пункт Руководства по гигиене окружающей среды — ПОБВ 22, Приказы и уведомления о кипячении воды.
6. Департамент здравоохранения штата Нью-Йорк, Центр гигиены окружающей среды. Уведомления о заказах на кипячение воды — информационный бюллетень для поставщиков воды.