СУЖДЕНИЕ — это… Что такое СУЖДЕНИЕ?
В традиц. формальной логике (вплоть до работ Фреге по логической семантике) под С. понимали (с теми или иными незначительными оговорками и дополнениями) утвердительное или отрицательное повествовательное предложение. Однако в традиц. учении о С., в особенности в разделе о преобразовании формы суждения, интуитивно подразумевалось и различие в использовании терминов «С.» и «повествовательное предложение». Первый обычно использовался как логический термин для обозначения утверждений (или отрицаний) «чего-то о чем-то», осуществляемых посредством повествовательных предложений (в том или ином языке). Второй служил для языковой характеристики утверждений, т.е. оставался Преимущественно грамматическим термином. Это неявное различие находило явное выражение в различении (в общем случае) логической структуры С. и грамматической структуры предложений, к-рое проводилось со времен аристотелевской силлогистики. Так, в классич. атрибутивных С. с у б ъ е к т (то, о чем нечто сказывается, или говорится – предмет речи) отождествлялся, как правило, с грамматич. подлежащим, а п р е д и к а т (то, что сказывается, или говорится, о предмете речи – субъекте) понимался уже грамматич. сказуемого и отождествлялся с именной частью сказуемого, выражаемого, напр., прилагательным. В отличие от грамматической, логическая форма сказывания (форма С.) всегда обозначала, что предмету (субъекту С.) присущ (или не присущ) определ. признак, т.е. сводилась к атрибутивной трехчленной связи: субъект – глагол-связка – атрибут. Указанное различие в употреблении терминов «С.» и «повествовательное предложение» привело в дальнейшем к более четкому определению соответствующих им понятий. Уже для Б. Больцано, а затем и для Г. Фреге С. – это содержание (смысл) истинного (или ложного) повествовательного предложения. Характеристика (повествовательного) предло-жения с т. зр. его истинностного значения восходит к Аристотелю и не является, конечно, новой. Главное, что отличает новое понимание от традиционного, это абстрагирование содержания (повествовательного) предложения – С. в собственном смысле слова – от его истинностного значения и от материальной (языковой) формы его выражения, выделение С. исключительно в качестве логического элемента речи – абстрактного объекта «…той же степени общности, что и класс, число или функция» (Чёрч Α., Введение в математическую логику, М., 1960, с. 32). Существенно новым является также выделение истинностных значений предложений – «истины» и «лжи» (к-рые могут быть поставлены в соответствие каждому повествовательному предложению в качестве его значения) – в качестве самостоятельных абстрактных объектов, включаемых в интерпретацию логических исчислений. Эта новая т. зр. объяснила смысл эквивалентных преобразований в логике, основанных на принципе объемности (см. Объемности принцип, Принцип абстракции): все истинные предложения эквивалентны в интервале абстракции отождествления по значению (но не по смыслу). С др. стороны, она позволила обобщить традиц. понятие структуры С. на основе понятия логической (или пропозициональной) функции, значениями к-рой являются предложения, или их истинностные значения. Так, предложению «Сократ есть человек» в традиц. понимании соответствовала схема «S есть Р». Если в этой схеме S и Ρ понимать как переменные, имеющие различные области значений, или как переменные различных семантических уровней, или разного сорта, или, наконец, принадлежащие к различным алфавитам: S – как переменную на области «индивидуальных имен», а Р – как переменную на области «понятий», то при выборе понятия «человек» в качестве значения переменной Ρ (или в общем случае, полагая значение переменной Ρ фиксированным, т.е. полагая, что Ρ имеет вполне определенное, хотя и произвольное, неуточняемое в данном контексте, значение) схема «S есть Р» преобразуется в выражение «S есть человек» (в общем случае в выражение «…есть Р», где точки заменяют букву S), к-рое при подстановке на место переменной S индивидуального имени (значения) «Сократ» обращается в истинное предложение. Очевидно, что выражение «…есть человек» (в общем случае выражение «…есть Р») – это функция от одной переменной, к-рая принимает значения «истина» или «ложь», когда на место точек ставят имя нек-рого субъекта, играющее здесь обычную роль аргумента функции. Аналогично этому выражение «…больше чем…» есть функция от двух переменных, а выражение «находится между… и…» – функция от трех переменных и т.п. Т. о., совр. взгляд на структуру С. сводится к тому, что его традиц. элементы «предикат» и «субъект» заменяются соответственно точными матем. понятиями функции и ее аргументов. Эта новая трактовка отвечает давно ощущавшейся потребности в обобщенной характеристике логич. рассуждений, к-рая охватывала бы не только (и даже не столько) силлогистические, но и в особенности несиллогистические умозаключения – осн. умозаключения науки. В свою очередь функциональная форма выражения С. открывает широкие возможности для формализации предложений любой науч. теории. (Объяснение того, как в совр. логике характеризуется и формализуется субъектно-предикатная структура С. см. в ст. Квантор и Предикатов исчисление.)В учебниках традиц. логики деления С. по качеству на утвердительные и отрицательные и по количеству на общие и частные (под частным здесь разумелось неопределенное частное суждение типа «Нек-рые, а может быть и все S, суть Р») объединялись в одну рубрику. Эта рубрика называлась делением С. по качеству и количеству. Сюда относилось четыре вида С:
1) общеутвердительное («все S суть Р»),
2) общеотрицательное («ни одно S не есть Р»),
3) частноутвердительное («нек-рые S суть Р»),
4) частноотрицательное («нек-рые S не суть Р»). В учебниках рассматривались далее отношения между этими суждениями с точки зрения истинности и ложности в т.н. логическом квадрате и отношения между объемами субъекта и предиката этих С. в т.н. учении о распределенности терминов в суждении.
В совр. логике к видам С. по количеству относят:
1) общие С. (С. с квантором общности),
2) неопредел. частные С., к-рые наз. просто частными (С. с квантором существования) и
3) единичные С.
К Аристотелю восходит и деление С. на С. действительности, возможности и необходимости, впоследствии названное делением по модальности. Под С. действительности Аристотель разумел С., в к-ром речь идет о том, что фактически есть, существует в действительности. Под С. Необходимости – С., в к-ром речь идет о том, что не может быть иначе. Под С. возможности – С., в к-ром речь идет о том, что может быть иначе, т.е. что может быть, но может и не быть. Напр., «Завтра может быть морская битва». В совр. логике высказывания с модальными операторами «возможно», «невозможно», «необходимо» и др. исследуются в различных системах модальной логики. Различение 1) выделяющих и включающих С. и 2) С. свойства и С. отношений также, в известном смысле, можно вести от Аристотеля. В четвертой и десятой главах первой книги «Топики» Аристотель рассматривал след. четыре вида соотношения того, что сказывается о предмете, с самим предметом: 1) определение, 2) собственное, 3) род, 4) случайное. Согласно Аристотелю, определением следует называть такое С., в к-ром выявляется собств. сущность предмета С. То, что сказывается в определении, принадлежит предмету С; оно не может сказываться о др. предмете. С о б с т в е н н ы м следует называть такое С., в к-ром, так же как и в определении, речь идет о чем-то, принадлежащем только предмету С. Но в отличие от определения, то, что сказывается в собственном С., не означает сущности мыслимого предмета. Р о д о м следует называть такое С., в к-ром выявляется несобств. сущность предмета, т.е. такая сущность, к-рой обладают и др. предметы, кроме предмета С. С л у ч а й н ы м следует называть все то, что, не будучи сущностью предмета С., может, так же как и род, сказываться о многих др. предметах. Это учение Аристотеля, названное впоследствии его комментаторами учением о предикабилиях, позволяет установить еще два важных вида С., а именно, выделяющее и включающее С. Выделяющими естественно называть те С., в к-рых речь идет об отличительном признаке предмета С., независимо от того, является ли этот признак существенным (определение) или несущественным (собственное). Напр., «Квадрат есть прямоугольник с равными сторонами» (определение). «Марс есть планета, светящаяся красным светом» (собственное). Включающими естественно называть те С., в к-рых речь идет о принадлежности предмету С. таких признаков, о к-рых известно, что они принадлежат не только предмету С., напр.: «Кит есть животное» (род), «Этот человек лежит» (случайное). Для деления С. на С. свойства и отношения представляет интерес то сведение всех категорий к трем, а именно к «сущности», «состоянию» и «отношению», к-рое Аристотель осуществил в 14-й книге «Метафизики». На основании указанных здесь категорий С. можно разделить на два вида: 1) С. свойства, в к-рых утверждаются как существ. свойства (сущность), так и несуществ. (состояние), 2) С. отношения, в к-рых утверждаются различного рода отношения между предметами. Сам Аристотель разделения на С. свойства и С. отношения еще не указывает. Это деление впервые, по-видимому, было дано Галеном (см. С. Galenus, Institutio logica, ed. С. Kalbfleisch, Lipsiae, 1896). Очень подробно оно разработано Каринским (см. «О курсе логики М. И. Каринского», «ВФ», 1947, No 2). В новое время (у X. Вольфа, И. Канта и во мн. следующих им школьных учебниках логики) имелось еще т.н. деление С. по о т н о ш е н и ю на категорические, условные (или гипотетические) и разделительные. Под категорическим С. разумелось здесь общее С., в к-ром связь между подлежащим и сказуемым устанавливается в безусловной форме. Гипотетическим (или иначе условным) называлось С., в к-ром связь между подлежащим и сказуемым становится в зависимость от к.-л. условия. Разделительным называлось С., к-рое содержит несколько сказуемых, из к-рых только одно может относиться к подлежащему, или несколько подлежащих, из к-рых только к одному может относиться сказуемое (см. М. С. Строгович, Логика, М., 1949, с. 166–67). В совр. логике деление С. по отношению не признается. т.н. категорическое суждение отождествляется здесь с простым суждением, а различные виды условных и разделительных С. рассматриваются как виды сложных суждений (см. Условное суждение, Разделительное суждение).Лит.: Таванец П. В., Вопр. теории суждениями., 1955: Πопов П. С., Суждение, М., 1957; Ахманов А. С., Логическое учение Аристотеля, М., 1900; Смирнова Е. Д., К проблеме аналитического и синтетического, в сб.: Филос. вопр. совр. формальной логики, М., 1962; Горский Д. П., Логика, 2 изд., М., 1963.
П. Таванец. Москва.
Философская Энциклопедия. В 5-х т. — М.: Советская энциклопедия. Под редакцией Ф. В. Константинова. 1960—1970.
dic.academic.ru
Суждение — это… Что такое Суждение?
Суждение — форма мышления, в которой что-либо утверждается или отрицается о предмете, его свойствах или отношениях между предметами. Виды суждений и отношения между ними изучаются в философской логике.
В математической логике суждениям соответствуют высказывания.
Простые и сложные суждения
Простые суждения — суждения, составными частями которых являются понятия. Простое суждение можно разложить только на понятия.
Сложные суждения — суждения, составными частями которых являются простые суждения или их сочетания. Сложное суждение может рассматриваться как образование из нескольких исходных суждений, соединенных в рамках данного сложного суждения логическими союзами (связками). От того, при помощи какого союза связываются простые суждения, зависит логическая особенность сложного суждения.
Состав простого суждения
Простое (атрибутивное) суждение — это суждение о принадлежности предметам свойств (атрибутов), а также суждения об отсутствии у предметов каких-либо свойств. В атрибутивном суждении могут быть выделены термины суждения — субъект, предикат, связка, квантор.
- Субъект суждения — это мысль о каком-то предмете, понятие о предмете суждения (логическое подлежащее).
- Предикат суждения — мысль об известной части содержания предмета, которое рассматривается в суждении (логическое сказуемое).
- Логическая связка — мысль об отношении между предметом и выделенной частью его содержания (иногда только подразумевается).
- Квантор — указывает, относится ли суждение ко всему объёму понятия, выражающего субъект, или только к его части: «некоторые», «все» и т. п.
Состав сложного суждения
Сложные суждения состоят из ряда простых («Человек не стремится к тому, во что не верит, и любой энтузиазм, не подкрепляясь реальными достижениями, постепенно угасает»), каждое из которых в математической логике обозначается латинскими буквами (A, B, C, D… a, b, c, d…). В зависимости от способа образования различают конъюнктивные, дизъюнктивные, импликационные, эквивалентные и отрицательные суждения.
Дизъюнктивные суждения образуются с помощью разделительных (дизъюнктивных) логических связок (аналогичных союзу «или»). Подобно простым разделительным суждениям, они бывают:
- нестрогими (нестрогая дизъюнкция), члены которой допускают совместное сосуществование («то ли…, то ли…»). Записывается как ;
- строгими (строгая дизъюнкция), члены которой исключают друг друга (либо одно, либо другое). Записывается как .
Импликационные суждения образуются с помощью импликации, (эквивалентно союзу «если …, то»). Записывается как или . В естественном языке союз «если …, то» иногда является синонимом союза «а» («Погода изменилась и, если вчера было пасмурно, то сегодня не одной тучи») и, в таком случае, означает конъюнкцию.
Конъюнктивные суждения образуются с помощью логических связок сочетания или конъюнкции (эквивалентно запятой или союзам «и», «а», «но», «да», «хотя», «который», «зато» и другим). Записывается как .
Эквивалентные суждения указывают на тождественность частей суждения друг другу (проводят между ними знак равенства). Помимо определений, поясняющих какой-либо термин, могут быть представлены суждениями, соединенными союзами «если только», «необходимо», «достаточно» (например: «Чтобы число делилось на 3, достаточно, чтобы сумма цифр, его составляющих, делилась на 3»). Записывается как (у разных математиков по-разному, хотя математический знак тождества всё-таки ).
Отрицательные суждения строятся с помощью связок отрицания «не». Записываются либо как a ~ b, либо как a b (при внутреннем отрицании типа «машина не роскошь»), а также с помощью черты над всем суждением при внешнем отрицании (опровержении): «не верно, что …» (a b).
Классификация простых суждений
По качеству
- Утвердительные — S есть P. Пример: «Люди пристрастны к самим себе».
- Отрицательные — S не есть P. Пример: «Люди не поддаются лести».
По объёму
- Общие — суждения, которые справедливы относительно всего объёма понятия (Все S суть P). Пример: «Все растения живут».
- Частные — суждения, которые справедливы относительно части объема понятия (Некоторые S суть P). Пример: «Некоторые растения суть хвойные».
По отношению
- Категорические — суждения, в которых сказуемое утверждается относительно субъекта без ограничений во времени, в пространстве или обстоятельствах; безусловное суждение (S есть P). Пример: «Все люди смертны».
- Условные — суждения, в которых сказуемое ограничивает отношение каким-либо условием (Если А есть В, то С есть D). Пример: «Если дождь пойдет, то почва будет мокрая». Для условных суждений
- Основание — это (предыдущее) суждение, которое содержит условие.
- Следствие — это (последующее) суждение, которое содержит следствие.
По отношению между подлежащим и сказуемым
Логический квадрат, описывающий отношения между категорическими суждениями
Субъект и предикат суждения могут быть распределены (индекс «+») или не распределены (индекс «-»).
- Распределено — когда в суждении подлежащее (S) или сказуемое (P) берется в полном объеме.
- Не распределено — когда в суждении подлежащее (S) или сказуемое (P) берется не в полном объёме.
Суждения А (обще-утвердительные суждения) Распределяет свое подлежащее (S), но не распределяет свое сказуемое (P)
Объем подлежащего (S) меньше объема сказуемого (Р)
- Прим.: «Все рыбы суть позвоночные»
Объемы подлежащего и сказуемого совпадают
- Прим.: «Все квадраты суть параллелограммы с равными сторонами и равными углами»
Суждения Е (обще-отрицательные суждения) Распределяет как подлежащее (S), так и сказуемое (P)
В этом суждении мы отрицаем всякое совпадение между подлежащим и сказуемым
- Прим.: «Ни одно насекомое не есть позвоночное»
Суждения I (частно-утвердительные суждения) Ни подлежащие (S), ни сказуемые (P) не распределены
Часть класса подлежащего входит в класс сказуемого.
- Прим.: «Некоторые книги полезны»
- Прим.: «Некоторые животные суть Позвоночные»
Суждения О (частно-отрицательные суждения) Распределяет свое сказуемое (Р), но не распределяет свое подлежащее (S) В этих суждениях мы обращаем внимание на то, что есть несовпадающего между ними (заштрихованная область)
- Прим.: «Некоторые животные не суть позвоночные (S)»
- Прим.: «Некоторые змеи не имеют ядовитых зубов (S)»
таблица распределения подлежащего и сказуемого
Подлежащее (S) | Сказуемое (P) | ||
---|---|---|---|
о-у | А | распределено | нераспределено |
о-о | Е | распределено | распределено |
ч-у | I | нераспределено | нераспределено |
ч-о | О | нераспределено | распределено |
Общая классификация:
- общеутвердительные (A) — одновременно общие и утвердительные («Все S+ суть P—»)
- частноутвердительное (I) — частное и утвердительное («Некоторые S— суть P—») Прим: «Некоторые люди имеют черный цвет кожи»
- общеотрицательное (E) — общее и отрицательные («Ни один S+ не суть P+») Прим: «Ни один человек не всеведущ»
- частноотрицательное (O) — частное и отрицательное («Некоторые S— не суть P+») Прим: «Некоторые люди не имеют черного цвета кожи»
Другие
- Разделительные —
1) S есть или А, или В, или С
2) или А, или В, или С есть Р когда в суждении остается место неопределенности
- Условно-разделительные суждения —
Если А есть В, то С есть D или Е есть F
если есть А, то есть а, или b, или с Прим: « Если кто желает получить высшее образование, то он должен учиться или в университете, или в институте, или в академии»
- Суждения тождества — понятия субъекта и предиката имеют один и тот же объём. Пример: «Всякий равносторонний треугольник есть равноугольный треугольник».
- Суждения подчинения — понятие с менее широким объёмом подчиняется понятию с более широким объёмом. Пример: «Собака есть домашнее животное».
- Суждения отношения — именно пространства, времени, отношения. Пример: «Дом находится на улице».
- Экзистенциальные суждения или суждения существования — это такие суждения, которые приписывают только лишь существование.
- Аналитические суждения — суждения, в которых мы относительно субъекта высказываем нечто такое, что в нём уже содержится.
- Синтетические суждения — суждения, расширяющие познание. В них не раскрывается содержание подлежащего, а присоединяется нечто новое.
Модальность суждений
Модальные понятия, или модальности — понятия, выражающие контекстную рамку суждения: время суждения, место суждения, знание о суждении, отношение говорящего к суждению.
В зависимости от модальности выделяются следующие основные виды суждений:
- Суждения возможности — «S, вероятно, есть Р» (возможность). Пример: «Возможно падение метеорита на Землю».
- Ассерторические — «S есть P» (действительность). Пример: «Киев стоит на Днепре».
- Аподиктические — «S необходимо должно быть P» (необходимость). Пример: «Две прямые линии не могут замыкать пространства».
Примечания
См. также
Литература
- Г. Челпанов. «Учебник логики». 9-е издание. Москва 1998 г.
- А. Д. Гетманова Логика // Изд. Книжный дом «Университет». 1998. — 480с.
dic.academic.ru
СУЖДЕНИЕ — Новая философская энциклопедия
СУЖДЕНИЕ – мысль, в которой утверждается наличие или отсутствие каких-либо положений дел. Различают простые и сложные суждения. Простым называется суждение, в котором нельзя выделить правильную часть, т.е. часть, не совпадающую с целым, в свою очередь являющуюся суждением. Основными видами простых суждений являются атрибутивные и суждения об отношениях. Атрибутивными называются суждения, в которых выражается принадлежность предметам свойств или отсутствие у предметов каких-либо свойств. Атрибутивные суждения можно истолковать как суждения о полном или частичном включении или невключении одного множества предметов в другое или как суждения о принадлежности или непринадлежности предмета классу предметов. Атрибутивные суждения состоят из субъекта (логического подлежащего), предиката (логического сказуемого) и связки, а в некоторых имеются еще так называемые кванторные (количественные) слова («некоторые», «все», «ни один» и др.). Субъект и предикат называются терминами [ТЕРМИН]суждения.
Субъект часто обозначается латинской буквой S (от слова «subjectum»), а предикат – Ρ (от слова «praedicatum»). В суждении «Некоторые науки не являются гуманитарными» субъект (5) – «науки», предикат (Р) – «гуманитарные», связка – «не являются», а «некоторые» – кванторное слово. Атрибутивные суждения делятся на виды «по качеству» и «по количеству». По качеству они бывают утвердительными (связка «суть» или «есть») и отрицательными (связка «не суть» или «не есть»). По количеству атрибутивные суждения делятся на единичные, общие и частные. В единичных суждениях выражается принадлежность или непринадлежность предмета классу предметов. В общих – включение или невключение класса предметов в класс.
В частных суждениях выражается частичное включение или невключение класса предметов в класс предметов. В них слово «некоторые» употребляется в смысле «по крайней мере некоторые, а может быть и все».
Суждения форм «Все S суть Р»(общеутвердительное), «Ни один S не суть Р» (общеотрицательное), «Некоторые S суть Р» (частноутвердительное), «Некоторые S не суть Р» (частноотрицательное) называются категорическими. Термины в категорических суждениях могут быть распределены (взяты в полном объеме) и не распределены (взяты не в полном объеме). В общих суждениях распределены субъекты, а в отрицательных предикаты. Остальные термины не распределены.
Суждения, в которых говорится о том, что определенное отношение имеет место (или не имеет места) между элементами пар, троек и т.д. предметов, называются суждениями об отношениях. Они делятся по качеству на утвердительные и отрицательные. По количеству суждения о двухместных отношениях делятся на единично-единичные, обще-общие, частно-частные, единично-общие, единично-частные, общеединичные, частно-единичные, обще-частные, частно-общие. Напр., суждение «Каждый студент нашей группы знает какого-нибудь академика» является обще-частным. Аналогично деление на виды по количеству суждений о трехместных, четырехместных и т.д. отношениях. Так, суждение «Некоторые студенты философского факультета знают некоторые древние языки лучше любого современного иностранного языка» является частно-частно-общим.
Кроме атрибутивных и суждений об отношениях в качестве специальных видов простых суждений выделяют суждения существования (типа «Инопланетяне существуют») и суждения тождества [ТОЖДЕСТВО] (равенства) (типа «a=b»).
Описанные суждения, а также образованные из них сложные суждения называются ассерторическими. Они являются (просто) утверждениями или отрицаниями. Наряду с утверждениями и отрицаниями выделяют так называемые сильные и слабые утверждения и отрицания. Напр., усилением ассерторических суждений «Человеку присуще свойство общения с себе подобными», «Человек не живет вечно», «Человек имеет мягкие мочки ушей» являются соответственно суждения «Человеку по необходимости присуще свойство общения с себе подобными», «Человек не может жить вечно», «Человек случайно имеет мягкие мочки ушей». Сильные и слабые утверждения и отрицания являются алетическими модальными суждениями. Среди них выделяют суждения необходимости (аподиктические), возможности и случайности.
Среди сложных суждений выделяют несколько видов. Соединительные суждения – это суждения, в которых утверждается наличие двух или более ситуаций. В естественном языке они образуются из других суждений чаще всего посредством союза «и». Этот союз обозначается символом л, называемым знаком (коммутативной) конъюнкции. Суждение с этим союзом называется (коммутативно) конъюнктивным. Определением знака конъюнкции является таблица, показывающая зависимость значения конъюнктивного суждения от значений составляющих его суждений. В ней ««» и «л» – это сокращения для значений «истина» и «ложь».
Суждения, в которых утверждается последовательное возникновение или существование двух или более ситуаций, называются некоммутативно-конъюнктивными. Они образуются из двух или более суждений при помощи союзов, обозначаемых символами Τ2, Т3 и т.д. в зависимости от числа суждений, из которых они образуются. Эти символы называются знаками некоммутативной конъюнкции и соответственно читаются «…, а затем…», «…, затем…, а затем…» и т.д. Индексы 2,3 и т.д. указывают на местность союза.
Разделительные суждения – это суждения, в которых утверждается наличие одной из двух, трех и т.д. ситуаций. Если утверждается наличие по крайней мере одной из двух ситуаций, суждение называется (нестрого) разделительным, или дизъюнктивным. Если утверждается наличие ровно одной из двух или более ситуаций, суждение называется строго-разделительным, или строго-дизъюнктивным.
Союз «или», посредством которого выражается утверждение первого типа, обозначается символом ∨ (читается «или»), называемым знаком нестрогой дизъюнкции (или просто знаком дизъюнкции), а союз «или…, или…», посредством которого выражается утверждение второго типа, – символом у (читается «или…, или…»), называемым знаком строгой дизъюнкции. Табличные определения знаков нестрогой и строгой дизъюнкции:
Суждение, в котором утверждается, что наличие одной ситуации обусловливает наличие другой, называется условным. Условные суждения чаще всего выражаются предложениями с союзом «если…, то…». Условный союз «если…, то…» обозначается стрелкой «→».
В языках современной логики находит широкое распространение союз «если…, то…», обозначаемый символом «⊃». Этот символ называется знаком (материальной) импликации, а суждение с этим союзом – импликативным. Часть импликативного суждения, находящуюся между словами «если» и «то», называют антецедентом, а часть, находящуюся после слова «то», – консеквентом. Знак импликации определяется таблицей истинности:
Суждение эквивалентности – это суждение, в котором утверждается взаимная обусловленность двух ситуаций.
Союз «если и только если…, то…» употребляется еще в одном смысле. В этом случае он обозначается символом «≡», называемым знаком материальной эквивалентности, который определяется таблицей истинности:
Суждения с этим союзом называются суждениями материальной эквивалентности.
Выше охарактеризованы простые алетические модальные суждения. Сложные суждения, образованные из других суждений посредством выражений «необходимо, что», «случайно, что», «возможно, что» тоже называются алетическими модальными суждениями. Алетическими модальными суждениями являются также сложные суждения, отдельные составные части которых являются алетическими модальными суждениями.
Алетические модальные понятия («необходимо», «случайно», «возможно») делятся на логические и фактические (физические). Положение дел может быть логически возможно или фактически возможно, логически необходимо или фактически необходимо, логически случайно или фактически случайно.
Логически возможно то, что не противоречит законам логики. Фактически возможно то, что не противоречит законам природы и общественной жизни.
Логически необходимо то, что является законом логики. Фактически необходимы законы природы и общественной жизни и логические следствия из них.
Литература:
1. Войшвилло Е.К., Дегтярев М.Г. Логика. М., 1998;
2. Ивлев Ю.В. Логика. М., 1998.
Ю.В.Ивлев
Источник: Новая философская энциклопедия на Gufo.megufo.me
Суждение — Википедия. Что такое Суждение
Сужде́ние — мысль, в которой утверждается наличие или отсутствие каких-либо положений дел[en][1].
Виды суждений и отношения между ними изучаются в философской логике.
В математической логике суждениям соответствуют высказывания.
Простые и сложные
Простые суждения — суждения, составными частями которых являются понятия. Простое суждение можно разложить только на понятия.
Сложные суждения — суждения, составными частями которых являются простые суждения или их сочетания. Сложное суждение может рассматриваться как образование из нескольких исходных суждений, соединенных в рамках данного сложного суждения логическими союзами (связками). От того, при помощи какого союза связываются простые суждения, зависит логическая особенность сложного суждения.
Состав простого суждения
Простое (атрибутивное) суждение — это суждение о принадлежности предметам свойств (атрибутов), а также суждения об отсутствии у предметов каких-либо свойств. В атрибутивном суждении могут быть выделены термины суждения — субъект, предикат, связка, квантор[2]:
- Субъект суждения — это мысль о каком-то предмете, понятие о предмете суждения (логическое подлежащее).
- Предикат суждения — мысль об известной части содержания предмета, которое рассматривается в суждении (логическое сказуемое).
- Логическая связка — мысль об отношении между предметом и выделенной частью его содержания (иногда только подразумевается).
- Квантор — указывает, относится ли суждение ко всему объёму понятия, выражающего субъект, или только к его части: «некоторые», «все» и т. п.
Пример: «Все кости являются органами живого организма.».
Субъект — «кость»;
Предикат — «органы живого организма»;
Логическая связка — «являютcя»;
Квантор — «все».
Состав сложного суждения
Сложные суждения состоят из ряда простых («Человек не стремится к тому, во что не верит, и любой энтузиазм, не подкрепляясь реальными достижениями, постепенно угасает»), каждое из которых в математической логике обозначается латинскими буквами (A, B, C, D… a, b, c, d…). В зависимости от способа образования различают конъюнктивные, дизъюнктивные, импликационные, эквивалентные и отрицательные суждения.
Дизъюнктивные (также разделительные) суждения образуются с помощью разделительных (дизъюнктивных) логических связок (аналогичных союзу «или»). Подобно простым разделительным суждениям, они бывают:
- нестрогими (нестрогая дизъюнкция), члены которой допускают совместное сосуществование («то ли…, то ли…»). Записывается как a∨b{\displaystyle a\lor b};
- строгими (строгая дизъюнкция), члены которой исключают друг друга (либо одно, либо другое). Записывается как a∨˙b{\displaystyle a{\dot {\lor }}b}.
Импликационные суждения образуются с помощью импликации, (эквивалентно союзу «если …, то»). Записывается как a→b{\displaystyle a\to b} или ab{\displaystyle ab}. В естественном языке союз «если …, то» иногда является синонимом союза «а» («Погода изменилась и, если вчера было пасмурно, то сегодня ни одной тучи») и, в таком случае, означает конъюнкцию.
Конъюнктивные суждения образуются с помощью логических связок сочетания или конъюнкции (эквивалентно запятой или союзам «и», «а», «но», «да», «хотя», «который», «зато» и другим). Записывается как a∧b{\displaystyle a\land b}.
Эквивалентные суждения указывают на тождественность частей суждения друг другу (проводят между ними знак равенства). Помимо определений, поясняющих какой-либо термин, могут быть представлены суждениями, соединенными союзами «если и только если», «необходимо и достаточно» (например: «Чтобы число делилось на 3, необходимо и достаточно, чтобы сумма цифр, его составляющих, делилась на 3»). Записывается как a≡b,a↔b,ab{\displaystyle a\equiv b,a\leftrightarrow b,ab} (у разных математиков по-разному, хотя математический знак тождества всё-таки ≡{\displaystyle \equiv }).
Отрицательные суждения строятся с помощью связок отрицания «не». Записываются либо как a ~ b, либо как a b (при внутреннем отрицании типа «машина не роскошь»), а также с помощью черты над всем суждением при внешнем отрицании (опровержении): «не верно, что …» (a b).
Классификация простых суждений
По качеству
- Утвердительные — S есть P. Пример: «Люди пристрастны к самим себе».
- Отрицательные — S не есть P. Пример: «Люди не поддаются лести».
По объёму
- Общие — суждения, которые справедливы относительно всего объёма понятия (Все S суть P). Пример: «Все растения живут».
- Частные — суждения, которые справедливы относительно части объёма понятия (Некоторые S суть P). Пример: «Некоторые растения хвойные».
- Единичные
По отношению
- Категорические — суждения, в которых сказуемое утверждается относительно субъекта без ограничений во времени, в пространстве или обстоятельствах; безусловное суждение (S есть P). Пример: «Все люди смертны».
- Условные — суждения, в которых сказуемое ограничивает отношение каким-либо условием (Если А есть В, то С есть D). Пример: «Если дождь пойдет, то почва будет мокрая». Для условных суждений
- Основание — это (предыдущее) суждение, которое содержит условие.
- Следствие — это (последующее) суждение, которое описывает ситуацию, образующуюся при выполнении условия.
По отношению между подлежащим и сказуемым
Субъект и предикат суждения могут быть распределены (индекс «+») или не распределены (индекс «-»).
- Распределено — когда в суждении подлежащее (S) или сказуемое (P) берется в полном объёме.
- Не распределено — когда в суждении подлежащее (S) или сказуемое (P) берется не в полном объёме.
Суждения А (обще-утвердительные суждения) Распределяет своё подлежащее (S), но не распределяет своё сказуемое (P)
Объём подлежащего (S) меньше объёма сказуемого (Р)
- Прим.: «Все рыбы суть позвоночные»
Объёмы подлежащего и сказуемого совпадают
- Прим.: «Все квадраты суть параллелограммы с равными сторонами и равными углами»
Суждения Е (обще-отрицательные суждения) Распределяет как подлежащее (S), так и сказуемое (P)
В этом суждении мы отрицаем всякое совпадение между подлежащим и сказуемым
- Прим.: «Ни одно насекомое не есть позвоночное»
Суждения I (частно-утвердительные суждения) Ни подлежащие (S), ни сказуемые (P) не распределены
Часть класса подлежащего входит в класс сказуемого.
- Прим.: «Некоторые книги полезны»
- Прим.: «Некоторые животные суть Позвоночные»
Суждения О (частно-отрицательные суждения) Распределяет своё сказуемое (Р), но не распределяет своё подлежащее (S) В этих суждениях мы обращаем внимание на то, что есть несовпадающего между ними (заштрихованная область)
- Прим.: «Некоторые животные не суть позвоночные (S)»
- Прим.: «Некоторые змеи не имеют ядовитых зубов (S)»
таблица распределения подлежащего и сказуемого
Подлежащее (S) | Сказуемое (P) | ||
---|---|---|---|
о-у | А | распределено | нераспределено |
о-о | Е | распределено | распределено |
ч-у | I | нераспределено | нераспределено |
ч-о | О | нераспределено | распределено |
Общая классификация:
- общеутвердительные (A) — одновременно общие и утвердительные («Все S+ суть P—»)
- частноутвердительное (I) — частное и утвердительное («Некоторые S— суть P—») Прим: «Некоторые люди имеют чёрный цвет кожи»
- общеотрицательное (E) — общее и отрицательные («Ни один S+ не суть P+») Прим: «Ни один человек не всеведущ»
- частноотрицательное (O) — частное и отрицательное («Некоторые S— не суть P+») Прим: «Некоторые люди не имеют чёрного цвета кожи»
Другие
- Разделительные —
1) S есть или А, или В, или С
2) или А, или В, или С есть Р когда в суждении остается место неопределенности
- Условно-разделительные суждения —
Если А есть В, то С есть D или Е есть F
если есть А, то есть а, или b, или с Прим: « Если кто желает получить высшее образование, то он должен учиться или в университете, или в институте, или в академии»
- Суждения тождества — понятия субъекта и предиката имеют один и тот же объём. Пример: «Всякий равносторонний треугольник есть равноугольный треугольник».
- Суждения подчинения — понятие с менее широким объёмом подчиняется понятию с более широким объёмом. Пример: «Собака есть домашнее животное».
- Суждения отношения — именно пространства, времени, отношения. Пример: «Дом находится на улице».
- Экзистенциальные суждения или суждения существования — это такие суждения, которые приписывают только лишь существование.
- Аналитические суждения — суждения, в которых мы относительно субъекта высказываем нечто такое, что в нём уже содержится.
- Синтетические суждения — суждения, расширяющие познание. В них не раскрывается содержание подлежащего, а присоединяется нечто новое.
Модальность суждений
Модальные понятия, или модальности — понятия, выражающие контекстную рамку суждения: время суждения, место суждения, знание о суждении, отношение говорящего к суждению.
В зависимости от модальности выделяются следующие основные виды суждений:
- Суждения возможности — «S, вероятно, есть Р» (возможность). Пример: «Возможно падение метеорита на Землю».
- Ассерторические — «S есть P» (действительность). Пример: «Киев стоит на Днепре».
- Аподиктические — «S необходимо должно быть P» (необходимость). Пример: «Две прямые линии не могут замыкать пространства».
Примечания
- ↑ Суждение. Интернет-версия издания: Новая философская энциклопедия: в 4 т. Институт философии РАН; Национальный общественно-научный фонд.
- ↑ БРЭ, 2016.
См. также
Литература
- Суждение // Социальное партнёрство — Телевидение. — М. : Большая российская энциклопедия, 2016. — С. 397. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 31). — ISBN 978-5-85270-368-2.
- Челпанов Г. Учебник логики. — 9-е издание. — М., 1998.
- Гетманова А. Д. Логика. — Книжный дом «Университет», 1998. — 480 с.
- Егоров С. Н. Суждение. — СПб., 2011. — 264 с.
wiki.sc
СУЖДЕНИЕ — это… Что такое СУЖДЕНИЕ?
СУЖДЕНИЕ — продукт и результат мыслительного процесса, предполагающего, что субъект, констатируя некоторое положение дел, выражает свое отношение к содержанию высказанной мысли в форме знания, убеждения, сомнения, веры. Это отношение либо подразумевается, либо выражается явно с помощью различного рода оценочных предикатов типа «верно», «необходимо», «возможно», «хорошо», «плохо», «допустимо», «запрещено» и др. Любое знание человека, любой его поступок можно подвести под такой предикат как критерий оценки. По определению И. Канта, способность С. состоит в способности применять свой рассудок в конкретных обстоятельствах. Отсутствие способности С. он называл глупостью: «против этого недостатка нет лекарства, тупой и ограниченный ум, которому недостает лишь надлежащей силы рассудка и собственных понятий, может обучением достигнуть даже учености. Но так как в таких случаях подобным людям обычно не достает способности С, то нередко можно встретить весьма ученых мужей, которые, применяя свою науку, на каждом шагу обнаруживают этот непоправимый недостаток». Связи между С. как средствами выражения оценочных отношений мыслящего субъекта к высказываемому содержанию исследуются в модальной логике, вместе с тем, в логический науке сложилось иное, более узкое понимание С. — как предложения (высказывания), выражающего мысль, которая лишь фиксирует некоторое положение дел и характеризуется в связи с этим истинностным значением (»истинно», «ложно», «неопределенно» и др.). Фундамент теории С. (в этом смысле) заложен в логике Аристотеля, его заслуга состоит прежде всего в том, что он обстоятельно исследовал связи и отношения между С. вида «Все А суть В», «Некоторые А суть В», «Ни одно А не есть В», «Некоторые А не есть В», принимающих два истинностных значения — «истинно» и «ложно». На основе этого он создал логическое учение, вошедшее в науку под названием аристотелевской силлогистики. Свое завершение — на базе применения математических методов — двузначная теория С. получила в классической логике. С, характеризующиеся более чем двумя истинностными значениями, изучаются в неклассических (многозначных) системах логики.
Новейший философский словарь. — Минск: Книжный Дом. А. А. Грицанов. 1999.
dic.academic.ru
суждение — это… Что такое суждение?
СУЖДЕНИЕ — мысль, выражаемая повествовательным предложением и являющаяся истинной или ложной. С. лишено психологического оттенка, свойственного утверждению. Хотя С. находит свое выражение только в языке, оно, в отличие от предложения, не зависит от… … Философская энциклопедия
Суждение — Суждение ♦ Jugement Мысль, имеющая ценность или притязающая на обладание ценностью. Вот почему всякое суждение оценочно, даже если предметом оценки служит истина (притом, что истина сама по себе не является ценностью). Суждение… … Философский словарь Спонвиля
Суждение — Суждение форма мышления, в которой что либо утверждается или отрицается о предмете, его свойствах или отношениях между предметами. Виды суждений и отношения между ними изучаются в философской логике. В математической логике суждениям… … Википедия
суждение — Суд, отзыв, отчет, мнение, рассуждение, соображение, понимание, взгляд; усмотрение, благоусмотрение, уразумение, глазомер, прозорливость, проницательность. Представить на чье усмотрение (благоусмотрение). В мои года не должно сметь свое суждение… … Словарь синонимов
СУЖДЕНИЕ — СУЖДЕНИЕ, суждения, ср. 1. только ед. Действие по гл. судить в 1 знач., обсуждение (книжн. устар.). «С общего сужденья приговорили.» Крылов. Длительное суждение о деле. 2. Мнение, заключение. «Не смею моего сужденья произнесть.» Грибоедов. «В мои … Толковый словарь Ушакова
СУЖДЕНИЕ — СУЖДЕНИЕ, суженый, см. судить Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля
суждение — СУЖДЕНИЕ (нем. Urteil; англ., франц. Judgement) мыслительный акт, выражающий отношение лица к содержанию высказываемой им мысли. В форме утверждения или отрицания С. необходимо сопровождается той или иной модальностью, сопряженной, как… … Энциклопедия эпистемологии и философии науки
суждение — СУЖДЕНИЕ, предположение СУДИТЬ, предполагать … Словарь-тезаурус синонимов русской речи
СУЖДЕНИЕ — 1) то же, что высказывание.2) Умственный акт, реализующий отношение говорящего к содержанию высказываемой мысли и связанный с убеждением или сомнением в ее истинности или ложности … Большой Энциклопедический словарь
Суждение — выражение элементов чувственного опыта в общезначимой словесной форме … Психологический словарь
psychology.academic.ru
СУЖДЕНИЕ — это… Что такое СУЖДЕНИЕ?
СУЖДЕНИЕ — мысль, выражаемая повествовательным предложением и являющаяся истинной или ложной. С. лишено психологического оттенка, свойственного утверждению. Хотя С. находит свое выражение только в языке, оно, в отличие от предложения, не зависит от… … Философская энциклопедия
Суждение — Суждение ♦ Jugement Мысль, имеющая ценность или притязающая на обладание ценностью. Вот почему всякое суждение оценочно, даже если предметом оценки служит истина (притом, что истина сама по себе не является ценностью). Суждение… … Философский словарь Спонвиля
Суждение — Суждение форма мышления, в которой что либо утверждается или отрицается о предмете, его свойствах или отношениях между предметами. Виды суждений и отношения между ними изучаются в философской логике. В математической логике суждениям… … Википедия
суждение — Суд, отзыв, отчет, мнение, рассуждение, соображение, понимание, взгляд; усмотрение, благоусмотрение, уразумение, глазомер, прозорливость, проницательность. Представить на чье усмотрение (благоусмотрение). В мои года не должно сметь свое суждение… … Словарь синонимов
СУЖДЕНИЕ — СУЖДЕНИЕ, суждения, ср. 1. только ед. Действие по гл. судить в 1 знач., обсуждение (книжн. устар.). «С общего сужденья приговорили.» Крылов. Длительное суждение о деле. 2. Мнение, заключение. «Не смею моего сужденья произнесть.» Грибоедов. «В мои … Толковый словарь Ушакова
суждение — одна из логических форм мышления (см. также понятие, умозаключение). С. есть связь между двумя понятиями (субъектом и предикатом). В логике разрабатываются классификации С. Психология изучает разви … Большая психологическая энциклопедия
СУЖДЕНИЕ — СУЖДЕНИЕ, суженый, см. судить Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля
суждение — СУЖДЕНИЕ (нем. Urteil; англ., франц. Judgement) мыслительный акт, выражающий отношение лица к содержанию высказываемой им мысли. В форме утверждения или отрицания С. необходимо сопровождается той или иной модальностью, сопряженной, как… … Энциклопедия эпистемологии и философии науки
суждение — СУЖДЕНИЕ, предположение СУДИТЬ, предполагать … Словарь-тезаурус синонимов русской речи
СУЖДЕНИЕ — 1) то же, что высказывание.2) Умственный акт, реализующий отношение говорящего к содержанию высказываемой мысли и связанный с убеждением или сомнением в ее истинности или ложности … Большой Энциклопедический словарь
Суждение — выражение элементов чувственного опыта в общезначимой словесной форме … Психологический словарь
dic.academic.ru