Анаболизм
Анаболизм, или ассимиляция (от лат. азвшй ш — уподобление), представляет собой эндотермический процесс уподобления поступающих в клетку веществ веществам самой клетки. Она является «созидательным» метаболизмом.[ …]
Анаболизм (пластический обмен, ассимиляция) — понятие, противоположное катаболизму: совокупность реакций синтеза сложных веществ из более простых (образование углеводов из углекислого газа и воды в процессе фотосинтеза, реакции матричного синтеза). Для протекания анаболических реакций требуются затраты энергии.[ …]
АНАБОЛИЗМ [от гр. anabole — подъем] — совокупность реакций обмена веществ в организме (метаболизма), соответствующих ассимиляции и направленных на образование органических веществ [70].[ …]
Ассимиляция (синоним — анаболизм) усвоение организмом поступающих из окружающей среды веществ в процессе роста и развития, их уподобление веществам организма.[ …]
Нарушения процессов биосинтеза (анаболизм) при попадании химических средств защиты растений в почву почти не имеют значения. Они заслуживают внимания только в той мере, в которой продукты обмена веществ микроорганизмов (например, фенолы как предшественники гуминовых веществ, органические кислоты как хелатирующие вещества, полисахариды как структурообразующие связующие материалы) оказывают влияние на физические и химические свойства почв. Тем не менее следует иметь в виду, что продолжительное действие фунгицидов на почвенные микроорганизмы приводит к снижению жизнеспособности клеток и задерживает накопление новой биомассы.[ …]
Основными метаболическими процессами являются анаболизм (ассимиляция) и катаболизм (диссимиляция).[ …]
КАТАБОЛИЗМ — составляющая метаболизма, противоположная анаболизму, процесс распада питательных веществ в организме, а также запасенных им веществ (например, гликогена печени), из которых образуется необходимая организму энергия.[ …]
Таким образом, клетка является изотермической системой. Между ассимиляцией (анаболизмом) и диссимиляцией (катаболизмом) существует диалектическое единство, проявляющееся в их непрерывности и взаимности. Например, непрерывно проходящие в клетке превращения углеводов, жиров и белков являются взаимными. Потенциальная энергия поглощаемых клетками углеводов, жиров и белков превращается в кинетическую энергию и тепло по мере превращения этих соединений. Замечательной особенностью клеток является то, что они содержат ферменты. Будучи катализаторами, они ускоряют протекание реакций, синтеза и распада в миллионы раз, при этом в отличие от органических реакций осуществляемых с использованием искусственных катализаторов (в лабораторных условиях), ферментативные реакции в клетках осуществляются без образования побочных продуктов.[ …]
Важнейшим моментом ассимиляции является синтез белков и нуклеиновых кислот. Частным случаем анаболизма является фотосинтез, который представляет собой биологический процесс, при котором органическое вещество синтезируется из воды, двуокиси углерода и неорганических солей под влиянием лучистой энергии Солнца. Фотосинтез в зеленых растениях является автотрофным типом обмена. [ …]
В живой микробиальной клетке непрерывно и одновременно протекают два процесса — распад молекул (катаболизм) и их синтез (анаболизм), составляющие в целом процесс обмена веществ — метаболизм. Иными словами, процессы деструкции потребляемых микроорганизмами органических соединений неразрывно связаны с процессами биосинтеза новых микробиальных клеток, различных промежуточных или конечных продуктов, на проведение которых расходуется энергия, получаемая микробиальной клеткой в результате потребления питательных веществ. Источником питания для гетеротрофных микроорганизмов являются углеводы, жиры, белки, спирты и т.д., которые могут расщепляться ими либо в аэробных, либо в анаэробных условиях. Значительная часть продуктов микробной трансформации может выделяться клеткой в окружающую среду или накапливаться в ней. Некоторые промежуточные продукты служат питательным резервом, который клетка использует после истощения основного питания.[ …]
Метаболизм обмен веществ и энергии в организме, биологической системе; объединение биосинтеза органических веществ (ассимиляции, анаболизма) и процессов их деструкции (диссимиляции, катаболизма). [ …]
Совокупность в живом организме всех химических превращений, обеспечивающих его жизнедеятельность, называется обменом веществ, или метаболизмом. Процессы метаболизма разделяются на 2 группы: анаболизм, или ассимиляция и катаболизм, или диссимиляция. Первая группа включает процессы биосинтеза органических веществ. Анаболизм обеспечивает рост, развитие организма, обновление его структур и накопление энергии. Катаболизм — это процессы расщепления сложных молекул до простых веществ. В детском возрасте преобладают процессы ассимиляции, в пожилом превалируют процессы диссимиляции.[ …]
Метаболизм — совокупность всех химических реакций, протекающих в живом организме. Значение метаболизма состоит в создании необходимых организму веществ и обеспечении его энергией. Выделяют две составные части метаболизма — катаболизм и анаболизм.[ …]
ОБМЕН ВЕЩЕСТВ — последовательное превращение, использование, накопление и потери вещества и энергии в живых организмах в процессе жизни, позволяющее им сохраняться, развиваться и самовоспроизводиться. О. в. состоит из процессов ассимиляции и дисимиляции (см. анаболизм, катаболизм, метаболизм).[ …]
Метаболизм есть совокупность катализируемых ферментами процессов, заключающихся, в основном, в обеспечении клеток энергией, получаемой преобразованием энергии солнечного света или расщеплением пищи, поступающей в организм, переводе молекул пищи в блоки, используемые затем для образования макромолекул, сборке биологических макромолекул, а также в синтезе (анаболизме) и распаде (катаболизме) биологических макромолекул, выполняющих специфические функции тех или иных клеток.[ …]
Конструктивный и энергетический обмен. Физиология изучает процессы, протекающие в живом организме, и их закономерности. Современная материалистическая физиология основана на принципе единства организма с окружающей средой. Взаимодействие организма со средой проявляется в обмене веществ и энергии (метаболизм). Он включает в себя два процесса: конструктивный обмен (ассимиляция, или анаболизм) и энергетический (диссимиляция, или катаболизм). В основе конструктивного обмена лежат биохимические реакции, в процессе которых усваиваются вещества, поступающие из окружающей среды, и идет создание биомассы клетки. Сущность энергетического обмена заключается в разрушении веществ, содержащихся в организме, преимущественно в результате гидролитических и окислительных процессов, сопровождающихся выделением энергии, необходимой для биосинтеза. Оба процесса в клетке идут одновременно и сочетаются друг с другом. Энергия, полученная клеткой в процессе обмена веществ, аккумулируется в соединениях, содержащих химические связи, при разрыве которых выделяется большое количество энергии (макроэргические). Часто это соединения с фосфатными связями, например аденозинтрифос-фат (АТФ). По мере надобности эти вещества подвергаются гидролитическому распаду, сопровождающемуся выделением энергии.[ …]
МЕТАБОЛИЗМ (обмен веществ) — в узком смысле слова промежуточный обмен, охватывающий всю совокупность реакций, главным образом ферментативных, протекающих в клетках и обеспечивающих как расщепление сложных соединений, так и их синтез и взаимопревращение. Определенная последовательность ферментативных превращений какого-либо вещества в клетке называется метаболическим путем, а образующиеся промежуточные продукты — метаболитами (см. анаболизм, катаболизм).[ …]
КАРТЫ ЭКОЛОГИЧЕСКИЕ — уменьшенные обобщенные изображения земной поверхности, содержащие определенные данные о воздействии на окружающую среду, состоянии окружающей среды и последствиях изменения её состояния. См. Картографирование экологическое. КАРЬЕР [фр. carrière от позднелат. qtiararia — каменоломня] — совокупность выемок в земной коре, образованных при добыче полезных ископаемых открытым способом. КАТАБОЛИЗМ [от гр. katabolë — сбрасывание вниз] — совокупность реакций обмена веществ в организме (метаболизма), соответствующих диссимиляции и заключающихся в распаде сложных органических веществ.[ …]
Питание как экологический фактор. Питанием называется процесс потребления энергии и вещества. Известны два способа питания: голофитный — без захвата пищи (посредством всасывания растворенных пищевых веществ через поверхностные структуры организма) и голозойный — посредством захвата частиц пищи внутрь тела. Пищевые вещества, попавшие в организм, вовлекаются в процессы метаболизма. Метаболизм представляет собой совокупность взаимосвязанных и сбалансированных процессов, включающих разнообразные химические превращения веществ в организме. Реакции синтеза сложных веществ, осуществляющиеся с потреблением энергии, составляют основу анаболизма, или ассимиляции.[ …]
Термины «соокисление», «кометаболизм» и «случайное окисление» используются для описания окисления и деградации неростовых субстратов микроорганизмами и являются по существу синонимами. Соокисление было описано Форстером [151] как механизм, с помощью которого активно растущие микроорганизмы окисляют химическое соединение, но не потребляют выделяющиеся при этом углерод и энергию. Впоследствии оба определения были подвергнуты критике на том основании, что они описывали метаболические явления, включенные в существующие понятия метаболизма, анаболизма и катаболизма. В настоящее время кометаболизм определяют как трансформацию соединения, которое неспособно поддерживать размножение клеток, обязательно в присутствии другого трансформируемого субстрата. [ …]
Другой постулат рассматриваемой гипотезы — это то, что способность к синтезу белка остается относительно неизменной во время старения листа. Удобным методом измерения скорости синтеза белка является определение скорости включения радиоактивных аминокислот, таких, как 14С-лейцин, в белок. Аналогичным образом можно определить скорость синтеза РНК по скорости включения предшественника РНК, такого, как ;14С-аденип. Данные, полученные с помощью этих методов, показали, что способность листьев табака включать 14С-лейцин и иС-адешш в процессе старения снижается, хотя довольно желтые листья сохраняют некоторую способность синтезировать определенные ферменты, такие, как пероксидазу и рибонуклеа-зу (вызывающие расщепление РНК). Однако это свидетельствует о том, что снижение способности к синтезу белка в большей •степени является результатом, чем причиной старения. Тем не менее представляется очевидным, что метаболизм белка в стареющих, связанных с растением листьях может рассматриваться как несбалансированная реакция круговорота, где процессы катаболизма преобладают над процессами анаболизма. [ …]
«Обмен веществ. Метаболизм». 9-й класс
Цели урока:
- познакомить учащихся с понятием «обмен веществ в организме», показать, что ассимиляция и диссимиляция — это два взаимосвязанных процесса;
- обеспечить закрепление основных биологических понятий: пластический и энергетический обмен; анаболизм, катаболизм, метаболизм, фотосинтез, ассимиляция, диссимиляция, распад;
- формировать умение выделять сущность процесса в изучаемом материале; обобщать и сравнивать, делать выводы; работать с текстом, схемами, другими источниками;
- реализация творческого потенциала учащихся, развитие самостоятельности;
- понимать влияние обмена веществ на сохранение и укрепление здоровья.
Элементы содержания: ассимиляция, диссимиляция, анаболизм, катаболизм, пластический обмен, энергетический обмен, метаболизм, обмен веществ.
Тип урока: изучение нового материала.
Оборудование: таблицы «Обмен веществ в организме», «Биосинтез белка», «Гликолиз».
Ход урока
I. Организационный моментII. Проверка домашнего задания1) Биологический диктант (допишите незаконченное предложение)
Фронтальный опрос
- По строению органоиды клетки делятся на __________ (мембранные и немембранные).
- Лизосомы содержат ______ (пищеварительные ферменты).
- Митохондрии являются _____________ (энергетическим центром клетки).
- Рибосомы состоят из _______ (белка и РНК).
- Выросты внутренней мембраны митохондрий называются ________ (кристами).
- Пластиды характерны только для _______ (растительных клеток).
- Лизосомы образуются в ________ (комплексе Гольджи).
- ЭПС участвует во внутриклеточной _________ (транспортировке веществ).
- Стопки мембран в пластидах, содержащие хлорофилл, называются ______ (гранами).
- Синтез белка осуществляется при помощи ________ (рибосом).
Актуализация знаний
Процесс тот имеет две стороны.
Обе они организму нужны:
За счет одного он рост прибавляет,
Энергию в клетках другой запасает.
(Обмен веществ = метаболизм;
пластический обмен = ассимиляция = анаболизм;
энергетический обмен = диссимиляция = катаболизм)
Реакции синтеза в клетках идут,
… тот вид обмена зовут.
(Пластическим)Глюкоза спешит в гликоген превращаться,
А в жир — глицерин, ну куда им деваться?
Сцепились аминокислоты в белки.
Ты этот процесс мне назвать помоги.
(Анаболизм = ассимиляция)Распада реакций — каскад в организме!
Важен этап этот для нашей жизни:
Энергию клеткам он нашим дает,
К развитию, росту он тканей ведет.
(Катаболизм = диссимиляция)
Задание: сравните два определения, найдите, есть ли в них отличие или они сходны. Чем вы это можете объяснить?
Метаболизм — ряд стадий, на каждой из которых молекула под действием ферментов слегка видоизменяется до тех пор, пока не образуется необходимое организму соединение.
Обмен веществ — последовательное потребление, превращение, использование, накопление и потеря веществ и энергии в живых организмах в процессе их жизни.
Объяснение учителя, показ презентации: Обмен веществ складывается из двух взаимосвязанных процессов — анаболизма и катаболизма.
Ассимиляция, или анаболизм (пластический обмен), — совокупность химических процессов, направленных на образование и обновление структурных частей клеток
1. В ходе ассимиляции происходит биосинтез сложных молекул из простых молекул-предшественников или из молекул веществ, поступивших из внешней среды.
2. Важнейшими процессами ассимиляции являются синтез белков и нуклеиновых кислот (свойственный всем организмам) и синтез углеводов (только у растений, некоторых бактерий и Цианобактерий).
3. В процессе ассимиляции при образовании сложных молекул идет накопление энергии, главным образом в виде химических связей.
Диссимиляция, или катаболизм (энергетический обмен), — совокупность реакций, в которых происходит распад органических веществ с высвобождением энергии
1. При разрыве химических связей в молекулах органических соединений энергия высвобождается и запасается в виде молекул аденозинтрифосфорной кислоты (АТФ).
2. Синтез АТФ у эукариот происходит в митохондриях и хлоропластах, а у прокариот — в цитоплазме, на мембранных структурах.
3. Диссимиляция обеспечивает все биохимические процессы в клетке энергией.
Самостоятельная работа по вариантам с биологическим текстом (работа в парах)
Учащиеся каждого варианта работают с текстом, а затем формулируют ответ, дополняют его. Происходит обсуждение, в ходе которого формулируются и записываются ответы на проблемные вопросы.1 вариантПрочитайте текст
Пластический обмен.
Пластический обмен (ассимиляция) — это совокупность реакций анаболизма (биосинтеза), или создание сложных молекул из простых. Процессы анаболизма, происходящие в зелѐных растениях с использованием солнечной энергии, имеют планетарное значение, играя решающую роль в синтезе органических веществ из неорганических (фотосинтез). Очень интенсивно анаболизм происходит в периоды роста: у животных — в молодом возрасте, у растений — в течение вегетационного периода. В клетке постоянно синтезируются белки из аминокислот, жиры из глицерина и жирных кислот, углеводы из моносахаридов, нуклеотиды из азотистых оснований и сахаров. Все реакции биосинтеза идут с поглощением энергии, которая освобождается при расщеплении молекулы АТФ, образовавшейся в ходе энергетического обмена.
Ответьте на вопросы.
- Какие ещё термины употребляются при данном типе обмена.
- Что происходит с энергией?
- Что происходит с АТФ?
Подготовьте общий ответ на поставленные вопросы.
2 вариантПрочитайте текст
Энергетический обмен.
Энергетический обмен или катаболизм — это совокупность реакций распада сложных органических соединений до более простых молекул или окисления какого-либо вещества, обычно протекающего с высвобождением энергии.
Катаболические реакции лежат в основе диссимиляции: утраты сложными веществами своей специфичности для данного организма в результате распада до более простых. Расщепление органических веществ осуществляется в цитоплазме и митохондриях с участием кислорода. Ряд процессов диссимиляции ‒ дыхание, брожение и гликолиз ‒ занимает центральное место в обмене веществ. Энергия, освобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме АТФ (аденозинтрифосфорной кислоты) и других высокоэнергетических соединений. АТФ — универсальный источник энергообеспечения КЛЕТКИ. Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования — присоединения неорганического фосфата к АДФ.Ответьте на вопросы.
- Какие ещё термины употребляются при данном типе обмена.
- Что происходит с энергией?
- Что происходит с АТФ?
Процессы | Ассимиляция | Диссимиляция |
1. Что происходит с | ||
2. Что происходит с | ||
3. Начальные продукты | ||
4. Конечные продукты | ||
5. В каком виде |
§ 2.8, № 70, 71 в рабочей тетради.
Дополнительный материал к урокуОсобенности обмена веществ у различных организмов
- Для каждого живого организма характерен особый, генетически закрепленный тип обмена веществ, зависящий от условий ѐго существования и от отношения площади поверхности тела к его массе. Это отношение тем больше, чем меньше животное. Следовательно, у крупных животных интенсивность обмена веществ ниже, чем у мелких.
- Интенсивность обмена веществ у человека условно принята за единицу.
- Слон — 0,33
- Лошадь — 0,52
- Овца — 1,05
- Собака — 1,57
- Землеройка — 35,24
- Если землеройка будет без пищи 7-9 часов, она погибнет!
- В организме человека и животных имеет место гормональная регуляция обмена веществ, координируемая центральной нервной системой.
- В растущем организме процессы ассимиляции преобладают над процессами диссимиляции, благодаря чему обеспечивается накопление веществ и роста организма. Это компенсируется усиленным питанием.
- При интенсивной физической работе и в старости преобладают процессы диссимиляции. При этом происходит постепенное истощение организма и в конечном итоге гибель организма.
- Во время фотосинтеза зеленые растения способны преобразовывать световую энергию Солнца в энергию химических связей органических веществ. В частности, из энергетически бедных веществ СО2 и Н2О они синтезируют богатые энергией углеводы и выделяют кислород.
6.6: Анаболизм — Биология LibreTexts
- Последнее обновление
- Сохранить как PDF
- Идентификатор страницы
- 46683
Анаболические пути
(следующий материал взят из Kaiser Microbiology)
Анаболизм, часто называемый биосинтезом, представляет собой метаболическое производство молекул, используемых в структуре и функциях клетки, из более простых органических молекул. Часто исходными субстратами для анаболических путей являются промежуточные продукты центрального метаболизма, называемые метаболитами-предшественниками. Подобно тому, как строительство здания требует затрат энергии и гвоздей в дополнение к строительным материалам, анаболизм также требует ввода АТФ и электронов (обычно в форме НАДФН, а не НАДН) в дополнение к метаболитам-предшественникам. Некоторые анаболические пути также требуют дополнительных строительных материалов, таких как азот, фосфат или сера.
Катаболические пути обеспечивают энергию, подпитывающую анаболические пути. Еще одним фактором, связывающим катаболические и анаболические пути, является образование метаболитов-предшественников. Метаболиты-предшественники — это промежуточные молекулы в центральном метаболизме, которые могут либо окисляться с образованием АТФ, либо использоваться для синтеза макромолекулярных субъединиц, таких как аминокислоты, липиды и нуклеотиды, как показано на рисунке \(\PageIndex{1}\)
Рисунок \ (\PageIndex{1}\): Интеграция метаболизма — метаболиты-предшественники. В качестве источников энергии могут использоваться углеводы, белки и липиды; метаболиты, участвующие в производстве энергии, могут использоваться для синтеза углеводов, белков, липидов, нуклеиновых кислот и клеточных структур. (Kaiser Microbiology)
Биосинтез аминокислот
(Этот раздел адаптирован из General Microbiology в Boundless)
Аминокислоты являются структурными единицами, из которых состоят белки. Они соединяются вместе, образуя короткие полимерные цепи, называемые пептидами, или более длинные цепи, называемые либо полипептидами, либо белками. Эти полимеры являются линейными и неразветвленными, каждая аминокислота в цепи присоединена к двум соседним аминокислотам. Процесс создания белков называется трансляцией и включает в себя пошаговое добавление аминокислот к растущей белковой цепи с помощью рибозима, называемого рибосомой. Порядок, в котором добавляются аминокислоты, считывается генетическим кодом с матрицы мРНК, которая представляет собой РНК-копию одного из генов организма.
Организмы различаются по своей способности синтезировать 20 распространенных аминокислот. Большинство бактерий и растений могут синтезировать все 20. Некоторые простые паразиты, такие как бактерии Mycoplasma pneumoniae , лишены синтеза всех аминокислот и берут свои аминокислоты непосредственно от своих хозяев. Все аминокислоты синтезируются из промежуточных продуктов гликолиза, цикла лимонной кислоты или пентозофосфатного пути. В большинстве анаболических путей аминокислот азот обеспечивается переаминированием с использованием аминокислот глутамата или глутамина (рис. \(\PageIndex{2}\)). Синтез аминокислот зависит от образования соответствующей альфа-кетокислоты, которая затем трансаминируется с использованием глутамата или глутамина с образованием аминокислоты.
Рисунок \(\PageIndex{2}\): Трансаминирование. При трансаминировании аминогруппа переносится от глутамата к органической кислоте с образованием аминокислоты (2021 Жанна Кагле)Глутамат и глутамин, с другой стороны, могут быть образованы путем прямого добавления аммония к альфа-кетоглутарату или глутамату с образованием глутамат или глутамин соответственно. Этот процесс называется аминированием (рис. \(\PageIndex{3}\). Аминирование альфа-кетоглутарата с образованием глутамата — это то, как бактерии превращают неорганический азот в органический азот, усваивая его клеткой.
Рисунок \(\PageIndex{3}\): Аминирование. Азот усваивается клеткой путем аминирования альфа-кетоглутарата с образованием глутамата и глутамина. (2021 Jeanne Kagle)
Ассимиляция азота
(Этот раздел адаптирован из материалов, предоставленных Линдой Бруслинд)
АссимиляцияАссимиляция 900 60 – это восстановительный процесс, при котором неорганическая форма азота восстанавливается до органические соединения азота, такие как аминокислоты и нуклеотиды, обеспечивающие рост и размножение клеток. Уменьшается только количество, необходимое ячейке. Ассимиляция аммиака происходит, когда аммиак (Nh4)/ион аммония (Nh5+), образующийся во время фиксации азота, используется для аминирования альфа-кетоглутарата с образованием глутамата. Ассимиляционное восстановление нитратов представляет собой восстановление нитратов до клеточного азота в многоэтапном процессе, при котором нитраты восстанавливаются до нитритов, затем аммиака и, наконец, до органического азота.
АзотфиксацияАзотфиксация описывает превращение относительно инертного газообразного азота (N2) в аммиак (Nh4), гораздо более удобную форму азота для большинства форм жизни. Процесс выполняется диазотрофы , ограниченное число бактерий и архей, которые могут расти без внешнего источника фиксированного азота благодаря своим способностям. Фиксация азота является важным процессом для земных организмов, поскольку азот является обязательным компонентом различных органических молекул, таких как аминокислоты и нуклеотиды. Растения, животные и другие организмы полагаются на бактерии и археи, которые обеспечивают азот в фиксированной форме, поскольку не известно эукариот, способных фиксировать азот.
Фиксация азота является чрезвычайно энергоемким и электронно-емким процессом, чтобы разорвать тройную связь в N2 и восстановить его до Nh4. Для этого требуется особый фермент, известный как нитрогеназа , который инактивируется O2. Таким образом, фиксация азота должна происходить в анаэробной среде. Аэробные азотфиксирующие организмы должны создавать особые условия или приспособления для защиты своего фермента. Азотфиксирующие организмы могут существовать независимо или в паре с растением-хозяином:
- Симбиотические азотфиксирующие организмы : эти бактерии сотрудничают с растением, чтобы обеспечить им среду, подходящую для функционирования их фермента нитрогеназы. Бактерии живут в тканях растения, часто в корневых клубеньках, фиксируют азот и делятся результатами. Растение обеспечивает как место для фиксации азота, так и дополнительные питательные вещества для поддержки энергозатратного процесса фиксации азота. Было показано, что бактерии и хозяин обмениваются химическими сигналами распознавания, которые облегчают отношения. Одной из самых известных бактерий в этой категории является Rhizobium , который сочетается с растениями семейства бобовых (клевер, соя, люцерна и т. д.). Бобовые хорошо известны своим высоким содержанием белка, а их взаимодействие с азотфиксирующим Rhizobium способствует их способности производить большие количества этих богатых азотом соединений.
- Свободноживущие азотфиксирующие организмы : эти организмы, как бактерии, так и археи, фиксируют азот для собственного использования, который в конечном итоге распределяется, когда организмы умирают или проглатываются. Свободноживущие азотфиксирующие организмы, которые растут анаэробно, не должны беспокоиться о специальной адаптации своего фермента нитрогеназы. Аэробные организмы должны адаптироваться. Цианобактерии , многоклеточные бактерии, производят специализированные клетки, известные как гетероцисты , в которых происходит фиксация азота. Поскольку цианобактерии производят кислород как часть своего фотосинтеза, внутри гетероцисты возникает аноксигенная версия, позволяющая нитрогеназе оставаться активной. Гетероцисты делят фиксированный азот с окружающими клетками, в то время как окружающие клетки обеспечивают гетероцисты дополнительными питательными веществами.
Ключевые моменты
- Анаболические пути зависят от энергии и метаболитов-предшественников, образующихся в результате катаболизма.
- Все аминокислоты синтезируются из промежуточных продуктов гликолиза, цикла лимонной кислоты или пентозофосфатного пути.
- Синтез аминокислот зависит от образования соответствующей альфа-кетокислоты, которая затем трансаминируется с образованием аминокислоты.
- Большинство бактерий усваивают азот в виде аммония, который используется для аминирования альфа-кетоглутарата (из цикла ТСА) с образованием глутамата. Некоторые могут превращать нитраты в аммоний, который затем усваивается.
- Лишь немногие прокариоты обладают способностью ассимилировать атмосферный азот в процессе, называемом азотфиксацией. Двумя примечательными примерами являются бобовые симбионты Rhizobium и цианобактерии.
6.6: Anabolism распространяется по недекларированной лицензии, автором, ремиксом и/или куратором является LibreTexts.
- Наверх
- Была ли эта статья полезной?
- Тип изделия
- Раздел или Страница
- Теги
Ассимиляция и анаболизм — в чем разница?
ассимиляция | анаболизм |Как существительные разница междуассимиляцией и анаболизмом заключается в том, что ассимиляция является актом ассимиляции или состоянием ассимиляции, в то время как анаболизм является конструктивным метаболизмом тела в отличие от катаболизма.
|