Исследование роли наследственности и среды близнецовым методом – Близнецовый метод — психология

Содержание

Метод исследования близнецов и его значение для решения вопроса о роли наследственности и среды в психическом развитии ребенка.

Первая попытка использовать близнецов для решения проблемы «природа и воспитание» принадлежит Ф. Гальтону, который интуитивно предугадал то, что стало научной истиной и серьезным методом исследования лишь спустя несколько десятилетий.

Увлечение близнецами было довольно характерным явлением в науке конца XIX — начала XX в. Изучали их биологию, патологию, происхождение и т.д. Близнецовые работы находим мы и у многих известных психологов того времени; например, Э. Торндайк исследовал 15 пар близнецов и их одиночнорожденных братьев и сестер по ряду тестов, включавших арифметические, словарные и т.д.; корреляции сиблингов по этим тестам колебались в пределах 0,3-0,4, а близнецов — 0,71-0,90. Результаты исследования привели Торндайка к выводу о выраженной роли наследственности в психических особенностях. Однако в данном случае сопоставлялась группа близнецов в целом с группой одиночнорожденных, т.е. близнецовый метод в его современном виде еще не оформился.

Первой же, очевидно, психогенетической работой, выполненной по близкой к современной схеме метода, было исследование С. Мерримана. Он диагностировал интеллект тестом Стенфорд-Бине у близнецов 5—9 и 10—16 лет, выделив среди них два типа: «дупликатные» и «братские». Оказалось, что сходство однополых близнецов существенно выше (0,87), чем разнополых, а у последних оно такое же, как у сиблингов (около 0,50). Мерриман считал, что более высокое сходство однополых пар объясняется включением в эту группу «дупликатных» близнецов. Следовательно, было необходимо разделить выборку однополых близнецов на два типа, для чего ученый предложил использовать критерии физического сходства. Выяснилось, что выделенная таким способом подгруппа близнецов, т.е. однополые и похожие настолько, что их путали, имела внутрипарную корреляцию по баллам IQ, равную 0,99.

Современный метод близнецов выглядит следующим образом. Существуют два типа близнецов — монозиготные (МЗ) и дизиготные (ДЗ). Монозиготные близнецы развиваются из одной яйцеклетки, оплодотворенной одним спермием, т.е. из одной зиготы. В норме из зиготы у человека развивается один плод, но по каким-то причинам, до сих пор науке не совсем ясным (точнее, их, очевидно, несколько), иногда на ранних стадиях деления зигота дает начало двум эмбриональным структурам, из которых далее развиваются два полноценных человеческих организма. При этом законы деления зиготы таковы, что каждый эмбрион получает точную половину родительских генов;

МЗ близнецы — единственные люди на Земле, имеющие одинаковые наборы генов. Дизиготные близнецы, с точки зрения генетической, — сиблинги, родные братья и сестры. Они развиваются из двух оплодотворенных яйцеклеток, т.е. из двух зигот; отличие от обычной нормы заключается только в одновременном развитии и рождении двух, а не одного ребенка. ДЗ имеют в среднем, как и сиблинги, 50% общих генов, причем, хотя это количество может сильно колебаться, подавляющее большинство ДЗ пар имеют 45-55% таковых

Ограничения метода близнецов связаны с двумя группами факторов: пре- и постнатальными. Первые — пренатальные — факторы заключаются в следующем. В зависимости от того, как рано зигота начала делиться на две эмбриональные структуры, МЗ близнецы могут иметь разные сочетания околоплодных оболочек: раздельные амнионы, но один хорион; обе оболочки могут быть раздельными и т.д. В некоторых случаях, а именно когда пара МЗ близнецов развивается в одном «комплекте» оболочек, может сложиться ситуация, в которой один близнец будет иметь лучшее кровоснабжение, чем другой. Это приведет к большей зрелости и большему весу при рождении, а потом — к лучшему развитию этого близнеца в начальном периоде онтогенеза.

Этот метод заключается в изучении закономерностей наследования признаков в парах одно- и двуяйцевых близнецов. Он предложен в 1875 г. Гальтоном первоначально для оценки роли наследственности и среды в развитии психических свойств человека. В настоящее время этот метод широко применяют в изучении наследственности и изменчивости у человека для определения соотносительной роли наследственности и среды в формировании различных признаков, как нормальных, так и патологических. Он позволяет выявить наследственный характер признака, определить пенетрантность аллеля, оценить эффективность действия на организм некоторых внешних факторов (лекарственных препаратов, обучения, воспитания).

Суть метода заключается в сравнении проявления признака в разных группах близнецов при учете сходства или различия их генотипов. Монозиготные близнецы, развивающиеся из одной оплодотворенной яйцеклетки, генетически идентичны, так как имеют 100% общих генов. Поэтому среди монозиготных близнецов наблюдается высокий процент конкордантных пар, в которых признак развивается у обоих близнецов. Сравнение монозиготных близнецов, воспитывающихся в разных условиях постэмбрионального периода, позволяет выявить признаки, в формировании которых существенная роль принадлежит факторам среды. По этим признакам между близнецами наблюдается дискордантность, т.е. различия. Напротив, сохранение сходства между близнецами, несмотря на различия условий их существования, свидетельствует о наследственной обусловленности признака.

Сопоставление парной конкордантности по данному признаку у генетически идентичных монозиготных и дизиготных близнецов, которые имеют в среднем около 50% общих генов, дает возможность более объективно судить о роли генотипа в формировании признака. Высокая конкордантность в парах монозиготных близнецов и существенно более низкая конкордантность в парах дизиготных близнецов свидетельствуют о значении наследственных различий в этих парах для определения признака. Сходство показателя конкордантности у моно и дизиготных близнецов свидетельствует о незначительной роли генетических различий и определяющей роли среды в формировании признака или развития заболевания. Достоверно различающиеся, но достаточно низкие показатели конкордантности в обеих группах близнецов дают возможность судить о наследственной предрасположенности к формированию признака, развивающегося под действием факторов среды.

Установление соотносительной роли наследственности и среды в развитии различных патологических состояний позволяет врачу правильно оценить ситуацию и проводить профилактические мероприятия при наследственной предрасположенности к заболеванию или осуществлять вспомогательную терапию при его наследственной обусловленности.

Трудности близнецового метода связаны, во-первых, с относительно низкой частотой рождения близнецов в популяции (1:86—1:88), что осложняет подбор достаточного количества пар с данным признаком; во-вторых, с идентификацией монозиготности близнецов, что имеет большое значение для получения достоверных выводов.

Для идентификации монозиготности близнецов применяют ряд методов. 1. Полисимптомный метод сравнения близнецов по многим морфологическим признакам (пигментации глаз, волос, кожи, форме волос и особенностям волосяного покрова на голове и теле, форме ушей, носа, губ, ногтей, тела, пальцевым узорам). 2. Методы, основанные на иммунологической идентичности близнецов по эритроцитарным антигенам (системы АВО, MN, резусу), по сывороточным белкам (γ-глобулину). 3. Наиболее достоверный критерий монозиготности предоставляет трансплантационный тест с применением перекрестной пересадки кожи близнецов.

Несмотря на трудоемкость близнецового метода и возможность ошибок при определении монозиготности близнецов, высокая объективность выводов делает его одним из широко применяемых методов генетических исследований у человека[2,с.283-284].


Читайте также:


Рекомендуемые страницы:

Поиск по сайту



Поиск по сайту:

poisk-ru.ru

Роль близнецового метода в исследовании наследственности и среды в формировании признаков. Проблема предрасположенности к заболеваниям. Факторы риска.

 

Близнецовый метод был введен Ф. Гальтоном.Он разделил близнецов на однояйцевых (монозиготных) и двуяйцовые (дизиготных).

Близнецовый метод используется для определения степени влияния среды и наследственности на развитие какого-либо признака.

Конкордантность – процент сходства между близнецами.

Дискондартность – процент различия в проявлении признака.

Если коэффициент наследственности больше 1, то признак наследственный.

Если от 0,5 до 1, то признак возник под влияние окружающей среды.

Родословная карта является средством в генеалогическом методе исследования наследственности.

Суть этого метода состоит в том, чтобы выяснить родственные связи и проследить наличие нормального или патологического признака среди близких и дальних родственников в этой семье. После сбора всех необходимых данных составляется родословная карта, отражающая все собранные сведения.

Наследственность и среда. В генетической информации заложена способность развития определенных свойств и признаков. Эта способность реализуется лишь в определенных условиях среды. Одна и та же наследственная информация в измененных условиях может проявится по разному. Норма реакции – диапазон изменчивости, в пределах которой в зависимости от условий среды один и тот же генотип способен давать разные фенотипы.

2. Характеристика гельминтов – паразитов человека Тюменской области.

 

Гельминты – паразитические многоклеточные организмы, относящиеся к низшим червям надтипа сколецида (Scolecida).

Характерная особенность многоклеточных – наличие в их жизненном цикле сложного индивидуального развития (онтогенеза) – из оплодотворенного яйца образуется взрослый организм в результате дробления зародышевых клеток и образования зародышевых листков с последующим формированием органов и тканей.

Возбудители гельминтозов человека отличаются сложным и разнообразным циклом развития. Все паразитические черви разделяются на геогельминты и биогельминты. У геогельминтов цикл развития связан с условиями внешней среды. Биогельминты развиваются с обязательным участием промежуточного хозяина.



Классификация гельминтов

Гельминты относятся к царству животных (Animania).

В организме человека паразитируют в основном два типа гельминтов: плоские и круглые черви. Наиболее часто встречающиеся у человека виды гельминтов относятся к следующим классам: трематоды, или сосальщики; цестоды, или ленточные черви; нематоды, или круглые черви.

БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ПАРАЗИТОВ ТИПА ПЛОСКИЕ ЧЕРВИ

Двустороннесимметричные (билатеральные) животные.

Тело покрыто кожно-мускульным мешком.

Тело не имеет полости (бесполостные) или паранхематозные животные.

Пищеварительный канал: передняя и средняя кишка, замкнутая слепо. У некоторых вообще отсутствует.

Нервная система: парные мозговые ганглии, переходящие в нервные стволы.

Кровеносная и дыхательная системы отсутствуют.

Выделительная система: протонефридии – система канальцев.

Половая система гермафродитна: сложная система протоков и органов для внутреннего оплодотворения.

Биологические особенности гельминтов класса трематод

Половозрелая стадия сосальщиков называется марита. Тело мариты листообразное от 2 до 80 мм длиной. На брюшной поверхности тела у них имеются органы фиксации – две присоски: ротовая и брюшная. Большинство сосальщиков гермафродиты.

Основными хозяевами трематод являются позвоночные животные и человек, а первыми (обязательными для всех) промежуточными хозяевами – различные виды пресноводных моллюсков. Характерной особенностью жизненного цикла сосальщиков является бесполое размножение личиночных стадий (полиэмбриония).

Марита откладывает яйца в организме основного хозяина, которые выводятся во внешнюю среду. Для дальнейшего развития яйцо, как правило, должно попасть в воду. Из яйца выходит личинка – мирацидий. Он имеет овальную форму, ресничный покров, светочувствительный глазок и протонефридии. В задней части тела мирацидия находятся зародышевые клетки. Мирацидий плавает в воде и активно проникает в тело промежуточного хозяина – моллюска. В печени моллюсков он превращается в спороцисту мешковидной формы. В спороцисте из зародышевых клеток развивается новое личиночное поколение – редии. У редий формируются зачатки пищеварительной, нервной и выделительной систем. В теле редий из зародышевых клеток развиваются церкарии. Они выходят из тела моллюска и с помощью хвостового придатка свободно плавают в воде. У церкариев развиты все системы органов за исключением половой. Церкарии некоторых видов трематод на переднем конце тела имеют острый стилет, с помощью которого они проникают в тело второго промежуточного хозяина. Личиночные стадии, развивающиеся в теле первого промежуточного хозяина, называются партениты.

У большинства видов трематод имеется второй промежуточный хозяин (рыбы, раки, крабы). Церкарии проникают в тело второго промежуточного хозяина и превращаются там в метацеркариев, вокруг которых формируются две оболочки.

Таким образом, для основного хозяина (человек) инвазионными стадиями могут быть: метацеркарии, адолескарии или церкарии.

БИЛЕТ № 47

 

1. Борьба материализма и идеализма в решении проблем развития. Преформизм и эпигенез. Реализация наследственной информации в становлении дефинитивного фенотипа. Молекулярно-генетические механизмы дифференцировки.

2. Биологический возраст. Его маркеры. Хронобиологическая концепция определения биологического возраста. Гетерохронность, гетеротопность, гетерокатефтентность процессов старения.

3. Цикл развития широкого лентеца. Нарисуйте в натуральную величину личинку, которой заражается человек.

 

1. Сложность процессов, лежащих в основе онтогенеза, трудный и продолжительный путь их изучения стали одной из причин появления, развития и’ существования идеалистических течений в эмбриологии, а затем и в биологии развития. Так, витализм допускал наличие в организмах особей нематериальной жизненной силы. В VII веке Я. ван Гельмонт создал учение об «археях» — духовных началах, управляющих деятельностью и развитием органов тела. В XVIII веке Г. Шталь полагал, что целесообразное устройство организма обеспечивает душа.

Первые микроскописты XVII века (Я. Сваммердам, М. Мальпиги, А. Левенгук) полагали, что зародыш находится в уже сформированном состоянии в яйцеклетке (овизм) или сперматозоиде (анималькулизм), а в процессе развития происходит лишь увеличение в размерах и уплотнение прозрачных ранее невидимых тканей. Так возник преформизм, основатели которого исходили из того, что структура будущего организма во всех деталях представлена в половых клетках. Преформизм основывался на креационизме (догме изначального творения всех живых существ) и заложенных в них зачатках всех будущих поколений («вложение зародышей»). В дальнейшем преформизм развивали Ш. Бонне, Л. Спалланцани и др.

Во второй половине XVIII века сформировалось учение о постепенном развитии и новообразовании, в ходе которого строение организма усложняется. Это учение, получившее название эпигенеза, развивалось

ПЛ. Мопертюи, Ж.Л. Бюффоном и особенно К.Ф. Вольфом (1734-1794), описавшим развитие зародыша курицы. В опубликованной в 1759 году знаменитой работе «Теория зарождения» К.Ф. Вольф продемонстрировал развитие зародышевых органов (кишечника, нервной системы) из примитивных пластов. Значительный вклад в теорию эпигенеза внёс К.М. Бэр (1792-1876), который в работе «История развития животных» (1828) показал преемственность последовательных стадий развития и усложнения строения зародыша, обнаружил сходство плана строения зародышей , оказавшегося тем большим, чем на более ранних этапах развития они рассматриваются (закон «зародышевого сходства» К.М. Бэра). Утверждающаяся концепция эпигенеза способствовала успешному развитию эмбриологии.

Однако в конце XIX века в связи с успехами цитологии оживились преформистские взгляды, которые обобщили В. Ру (1850-1924) и другие основатели неопреформизма. Они утверждали, что каждый участок яйцеклетки представляет будущую определённую часть организма (орган, систему органов)


Возрождение в конце XIX века эпигенетического учения в форме неоэпигенеза, к сожалению, в ряде случаев сопровождалось откатом на идеалистические позиции витализма. Так, X. Дриш (1867-1945), изучивший развитие морских ежей из бластомеров, пришёл к заключению, что пространственное упорядочение в развивающемся организме проходит под действием нематериального фактора — энтелехии. И только с развитием генетики в XX веке в эмбриологии получили распространение материалистические толкования закономерностей онтогенеза, основанные на признании ключевой роли генетической информации и факторов внешней среды в развитии живого организма.

Изменения в процессе онтогенеза включают изменения на разных уровнях организации особи: молекулярном, клеточном, тканевом, органном, системном. Являясь достаточно сложными, они исследуются учёными из различных областей биологии — генетиками, биохимиками, морфологами, эмбриологами и др. На стыке этих и других биологических дисциплин возникла самостоятельная биологическая наука — биология развития, которая стала преемницей механики развития и эмбриологии в середине XX века. Биология развития изучает наследственные, молекулярные и структурно-функциональные основы развития организмов, механизмы клеточных взаимодействий и регуляции онтогенеза, обеспечивающие дифференцировку клеток, тканей и органов, а также целостность онтогенеза. Достижения биологии развития открывают большие перспективы для практики. Успешно разрабатываются, в частности, научные основы управления развитием животных и растений, регуляции пола и численности животных, опухолевого роста и др.

 

2. Биологический возраст.

Биологический возраст, или Возраст развития — понятие, отражающее степень морфологического и физиологического развития организма. Введение понятия «биологический возраст» объясняется тем, что календарный (паспортный, хронологический) возраст не является достаточным критерием состояния здоровья и трудоспособности стареющего человека.

Среди сверстников по хронологическому возрасту обычно существуют значительные различия по темпам возрастных изменений. Расхождения между хронологическим и биологическим возрастом, позволяющие оценить интенсивность старения и функциональные возможности индивида, неоднозначны в разные фазы процесса старения. Самые высокие скорости возрастных сдвигов отмечаются у долгожителей, в более молодых группах они незначительны.

Биологический возраст определяется совокупностью обменных, структурных, функциональных, регуляторных особенностей и приспособительных возможностей организма. Оценка состояния здоровья методом определения биологического возраста отражает влияние на организм внешних условий и наличие (отсутствие) патологических изменений.

Биологический возраст, помимо наследственности, в большой степени зависит от условий среды и образа жизни. Поэтому во второй половине жизни люди одного хронологического возраста могут особенно сильно различаться по морфо-функциональному статусу, то есть биологическому возрасту. Моложе своего возраста обычно оказываются те из них, у которых благоприятный повседневный образ жизни сочетается с положительной наследственностью.

Основные проявления биологического возраста при старении – нарушения важнейших жизненных функций и сужение диапазона адаптации, возникновение болезней и увеличение вероятности смерти или снижение продолжительности предстоящей жизни. Каждое из них отражает течение биологического времени и связанное с ним увеличение биологического возраста.

Самыми информативными маркерами биологического возраста сквозь весь интервал наблюдения 1-17 лет являютя скелетные размеры тела, обнаруживающие максимальное число свзей со всеми другими критериями биологического возраста. Акцелерированность скелетного рзвития в процессе роста у детей в целом связана с акцелерированностью и по другим показателям биологического возраста.

Гетерохронность – это различие наступления старения различных органов и тканей. Атрофия вилочковой железы начинается у человека в подростковом возрасте, половых желез – в климактерическом периоде, а некоторые функции гипофиза сохраняются на высоком уровне до глубокой старости. Вилочковая железа – это дольчатая железа позвоночных животных и человека, расположенная справа и слева от трахеи. Хорошо развита в молодом возрасте. Участвует в кроветворении, продуцируя лимфоциты, в регуляции роста и общего развития организма, в формировании иммунитета.

Гетеротопность – выраженность процесса старения – неодинакова для разных органов и разных структур одного и того же органа. Возрастные изменения прежде всего начинают сказываться на нервной и сердечно-сосудистой системах, на функциях дыхания, обмене веществ и работе опорно-двигательного аппарата. Изменения со стороны центральной нервной системы дают о себе знать ухудшением памяти, ослаблением деятельности анализаторов (слух, зрение), рассеянностью, повышенной раздражительностью, преобладанием минорного настроения. Но особенно ощутимы изменения в сердечно-сосудистой системе.

Гетерокатефтенность (от греч. “катефтенсис” — направление) — разнонаправленность возрастных изменений, связанная, например, с подавлением одних и активизацией других жизненных процессов в стареющем организме.

 

3. Группа: Vermes

Тип: Platodes

Класс: Cestoidea

Отряд: Pseudophyllidea

Вид: Diphyllobothrium latum

Диагностические признаки: длина 7-10 м. сколекс лишен присосок. Прикрепляется к стенкам кишок при помощи 2 присасывательных бороздок – ботрий. Проглотиды в ширину больше, чем в длину. Матка имеет форму в виде петель, образующих розетку. Отверстие матки расположено у переднего края проглотиды. Яйца овальные, желтовато-коричневого цвета. Имеется крышечка.

Жизненный цикл: смена 2 промежуточных хозяев. Основные хозяева – человек и плотоядные млекопитающие. Первый промежуточный хозяин – циклоп, второй — рыба. Яйца должны попасть в воду, в воде из яйца освобождается свободно плавающая личинка – корацидий, снабженная 3 парами крючьев. Для дальнейшего развития корацидий должен быть проглочен 1 промежуточным хозяином. В кишках рачка корацидий теряет реснички и в виде онкосферы проникает в полость тела. Здесь он превращается в процеркоид. Если рачка проглатывает рыба, то в ее мускулатуре процеркоид превращается в плероцеркоид. Таким образом инвазионной стадией для человека является плероцеркоид.

Патогенное значение: ботриями лентец защемляет слизистую оболочку кишки, что приводит к омертвлению тканей. Клубки из стробил нескольких гельминтов могут повлечь за собой кишечную непроходимость. Вызывает общую слабость и истощение

Билет№48


Рекомендуемые страницы:


Воспользуйтесь поиском по сайту:

megalektsii.ru

Методы изучения наследственности человека. Генеалогический и близнецовый методы, их значение для медицины.

Билет № 16

Методы изучения наследственности человека. Генеалогический и близнецовый методы, их значение для медицины.

3. Предмет основы биологии человека и животных и его место среди других медико-биологических дисциплин для специалиста по медицинской аппаратуре.

Ответ 1. К методам, широко используемым при изучении генетики че­ловека, относятся генеалогический, популяционно-статистический, близнецовый, метод дерматоглифики, цитогенетический, биохими­ческий, методы генетики соматических клеток.

Генеалогический метод —составление и анализ родословных. При составлении родо­словных исходным явля­ется человек—пробанд, родословную которого изучают. Обычно это или больной, или носитель определенного признака, на­следование которого необ­ходимо изучить. При составлении родословных таблиц используют условные обозначения. Поколения обозначают римскими цифрами, индивидов в данном поколении—арабскими.

С помощью метода установляется наследственная обусловленность изучаемого признака, тип его наследования. При анализе родословных по нескольким признакам выявляется сцепленный характер их наследования, что исполь­зуют при составлении хромосомных карт. Метод позволяет изучать интенсивность мутационного процесса, оценить экспрес­сивность и пенетрантность аллеля. Используется в медико-генетическом консультировании для прогнозирования по­томства. Генеалогический анализ существенно осложняется при малодетности семей.

Близнецовый метод.Этот метод заключается в изучении закономерностей наследо­вания признаков в парах одно- и двуяйцевых близнецов. Применение: изучение наслед­ственности и изменчивости у человека для определения соотноси­тельной роли наследственности и среды в формировании различных признаков, как нормальных, так и патологических, оценить эффективность действия на организм неко­торых внешних факторов (лекарственных препаратов, обучения, воспитания).

Ответ 3.

Все методы диагностики основаны на биологических принципах.

Термин биология (от греч. биос —жизнь, логос — наука) введен в начале XIX в. независимо Ж.-Б. Ламарком и Г. Тревиранусом для обозначения науки о жизни как особом явлении природы. В настоящее время его используют и в ином смысле, относя к группам организмов, вплоть до вида (биология микроорганизмов, биология северного оленя, биология человека), биоценозам (биология аркти­ческого бассейна), отдельным структурам (биология клетки).

Современная биология представляет комплекс, систему наук.

Изучение закономерностей, процессов и механизмов индивидуального развития организмов, наследственности и изменчивости, хранения, передачи и использования биологической информации, обеспечения жизненных процессов энергией является основой для выделения эмбриологии, биологии развития, генетики, молекуляр­ной биологии и биоэнергетики. Исследования строения, функцио­нальных отправлений, поведения, взаимоотношений организмов со средой обитания, исторического развития живой природы привели к обособлению таких дисциплин, как морфология, физиология, этология, экология, эволюционное учение. Интерес к проблемам старения, вызванный увеличением средней продолжительности жизни людей, стимулировал развитие возрастной биологии.

Билет № 17

Генотип как целое. Ядерная и цитоплазматическая наследственность.

Понятие о виде. Реальность вида. Структура вида. Критерии вида.

Билет № 18

Строение и функции ДНК. Механизм авторепродукции ДНК. Биологическое значение.

Роль наследственности и среды в онтогенезе. Критические периоды развития. Тератогенные факторы среды.

Билет № 19

1. Генетические механизмы определения пола. Дифференциация признаков пола в развитии. Факторы, влияющие на предопределение пола в онтогенезе.

2. Биологические и социальные аспекты старения и смерти. Проблема долголетия. Понятие о геронтологии и гериатрии.

Ответ 1.

Важным доказательством в пользу наследственной детермини­рованности половой принадлежности организмов является наблю­даемое у большинства видов соотношение по полу 1:1.

Такое соотношение может быть обусловлено образованием двух видов гамет представителями одного пола (гетерогаметный пол) и одного вида гамет —особями другого пола (гомогаметный пол). Это соответствует различиям в кариотипах организмов разных полов одного и того же вида, проявляющимся в половых хромосомах. У гомогаметного пола, имеющего одинаковые половые хромосомы XX, все гаметы несут гаплоидный набор аутосом плюс Х-хромосому. У гетерогаметного пола в кариотипе кроме аутосом содержатся две разные или только одна половая хромосома (XY или ХО). Его представители образуют два вида гамет, различающиеся по гетеро-хромосомам: X и Y или X и 0.

У большинства видов развитие признаков пола осуществляется на основе наследственной программы, заключенной в генотип. Однако известны примеры, когда половая принадлежность организма целиком зависит от условий, в которых он развивается.

У высших организмов значение среды в определении признаков пола, как правило, невелико. Возможность переопределения пола обусловлена тем, что первичные закладки гонад у эмбрионов всех животных изначально бисексуальны. В процессе онтогенеза происходит выбор направления развития закладки в сторону при­знаков одного пола, включая дифференцировку половых желез, формирование половых путей и вторичных половых признаков. Первостепенная роль в развитии мужского или женского фенотипа принадлежит гормонам, образуемым гонадами.

Генотип особи заключает в себе информацию о возможности формирования при­знаков того или иного пола, которая реализуется лишь при определенных условиях индивидуального развития. Изменение этих условий может стать причиной переопределения признаков пола.

Ответ 2.

Старение представляет собой всеобъемлющий процесс, охваты­вающий все уровни структурной организации особи —от макромолекулярного до организменного.

Ряд наблюдений легли в основу достаточно распространенной точки зрения о наследуемости продолжительности жизни и, следо­вательно, наличии генетического контроля или даже особой генети­ческой программы старения. Представ­ление о величине наследуемости продолжительности жизни полу­чают, определяя коэффициент наследуемости. Результаты оценки степени генетического контроля старения путем расчета коэффициента наследуемости долгожительства ука­зывают лишь на отсутствие специальной генетической программы старения. При отсутствии специальных генов или целой программы, прямо определяющих развитие старческих признаков, процесс старения находится тем не менее под генетическим конт­ролем путем изменения его скорости. Называют разные пути такого контроля. Во-первых, это плейотропное действие, свойственное многим генам. Во-вторых, со временем в генотипах соматических клеток, особенно в области регуляторных нуклеотидных последовательно­стей, накапливаются ошибки (мутации). Следствием этого является нарастающее с возрастом нарушение работы внутриклеточных ме­ханизмов, процессов репликации, репарации, транскрипции ДНК. В-третьих, генетические влияния на скорость старения могут быть связаны с генами предрасположенности к хроническим заболе­ваниям, таким, как ишемическая болезнь сердца, атеросклероз сосудов головного мозга, гипертония, наследуемым по полигенному типу.

В ис­следованиях зависимости скорости старения от условий жизни, проводимых на лабораторных животных, используют следующие признаки: 1) состояние белков соединительной ткани коллагена и эластина; 2) показатели сердечной деятельности и кровообращения; 3) содержание пигмента липофусцина в клетках нервной системы и сердца; 4) показатели произвольной двигательной активности; 5) способность к обучению.

Влияние социально-экономических условий на длительность жиз­ни может быть оценено путем сравнения названного показателя для одной и той же популяции (например, население страны), но в разные исторические периоды или же путем сопоставления продол­жительности жизни в двух популяциях, различающихся по жизнен­ному уровню и сосуществующих в одно и то же историческое время.

Геронтология – это наука, изучающая биологические механизмы и процессы, обуславливающие и сопровождающие старение живых существ, а также способы замедления старения и увеличения продолжительности жизни.

Гериатрия – медицинская дисциплина, занимающаяся изучением особенностей заболеваний у лиц пожилого и старческого возраста и их лечением.

Билет № 20

Билет 21.

Ответ 1.

Жизнь – макромолекулярная открытая система, которой свойственна иерархическая организация, способность к самовоспроизведению, обмен веществ, тонко регулируемый поток энергии. Основные особенности живого: специфическая структура и организация биологических систем; обмен веществ, энергии, информации; самовоспроизведение биологических систем; развитие биосистем и их угнетение; гомеостаз (постоянство внутренней среды). Включенность организмов в процесс эволюции – принцип существования жизни во времени и пространстве.

В медико-биологической науке широко используют классификацию уровней в соответствии с важнейшими чертами, структурами и компонентами организма. Объектами служат организм, органы, ткани, клетки, внутриклеточные структуры, молекулы. В названной классификации выделяются молекулярно-генетический, организменный или онтогенетический, популяционно-видовой, биогеоценотический уровни. Элементарной единицей на молекулярно-генетическом уровне служит ген, в котором записан определенный объем биологической информации. На клеточном уровне сопрягаются механизмы передачи биологической информации и превращения веществ энергии. Элементарной единицей организменного уровня является особь в ее развитии от момента зарождения до прекращения существования в качестве живой системы, что позволяет также назвать этот уровень онтогенетическим. Закономерность изменения организма в индивидуальном развитии составляют элементарное явление данного уровня. Элементарной единицей популяционно-видового уровня служит популяция – совокупность особей одного вида. Биогеоценозы служат элементарной единицей биогеоценотического уровня. Элементарное явление представлено энергетическими круговоротами. Ведущая роль в этих круговоротах принадлежит организмам.

Ответ 2.

Присутствие в генофонде вида одновременно различных аллелей гена называют множественным аллелизмом. У человека множественный аллелизм свойственен многими генам. Так, 3 аллели гена I определяют групповую принадлежность крови по системе АВО (IA, IB, IO), 2-ая аллели имеют ген, обуславливающий резус-принадлежность. Более 100 аллелей насчитывают гены α и β – полипептидов гемоглобина. Причиной множественного аллелизма является случайнее изменения структуры гена (мутации), сохраняемые в процессе естественного отбора в генофонде популяции.

Большинство количественных признаков организмов определяются полигенами, т.е. системой неаллельных генов, одинаково влияющих на формирование данного признака. Взаимодействие таких генов в процессе формирования признака называют полигенным. Чем больше в генотипе доминантных генов каждой пары, тем ярче выражен признак. По полигенному типу взаимодействия у человека определяется интенсивность окраски кожных покровов, зависящая от уровня отложения в клетках пигмента меланина.

Такое взаимодействие неаллельных генов, при котором они взаимно дополняют друг друга, называют комплементарным взаимодействием. Пример: процесс формирования половой принадлежности организма у человека. В некоторых случаях при взаимодействии неаллельных генов для развития сложного признака необходимо обязательное присутствие одного из генов (А) в гомозиготном рецессивном состоянии (аа), тогда другой ген (В) обеспечивает формирование признака. Наличие в генотипе доминантного аллеля гена А каким-то образом препятствует проявлению гена В (в), и признак не формируется. Такое взаимодействие неаллельных генов принято называть эпистатическим. Пример: у тыквы развитие окраски плодов определяется геном В. Доминантный, его аллель детерминирует желтую, а рецессивный — зеленую окраску.

Билет 22 .

Билет 23.

Биогеографическая характеристика условий обитания как фактора заражения паразитарными болезнями. Примеры. Средства профилактики.

Билет 24.

Генотип, геном, фенотип. Фенотип как результат реализации наследственной информации в специфических условиях среды. Взаимодействие аллелей в детерминации признаков: доминирование, промежуточное проявление, рецессивность, кодоминантность, аллельное исключение.

Билет 25.

Наследственность и изменчивость – фундаментальные свойства живого, их диалектическое единство. Общие понятия о генетическом материале и его свойствах: хранение, изменение, репарация, передача, реализация генетической информации. Характеристика диплоидного и гаплоидного набора хромосом.

Ответ 3. Гомеостаз

Кровь, тканевая жидкость и лимфа образуют внутреннюю среду организма. Основной внутренней средой является кровь, которая доставляет клеткам и тканям питательные вещества и кислород, и удаляет продукты обмена веществ. К жидкостным средам организма относят лимфу, которая находится в лимфатических сосудах. Кровь входит в группу соединительных тканей. Она состоит из двух основных компонентов: плазмы и взвешенных в ней форменных элементов. Основные функции: 1) дыхательная функция, перенос кислорода от легких к тканям и углекислого газа наоборот. 2) трофическая функция – доставка питательных веществ к органам и тканям. 3) транспорт гормонов и ферментов, участие в гуморальной регуляции функций в организме. 4) перенос продуктов обмена веществ к месту их выделения. 5) поддержание постоянства температуры тела путем распространения тепла от органов с высоким уровнем обмена веществ к другим органам и тканям, где происходит теплоотдача (кожа). 6) участие в защитных функциях организма – транспорт лимфоцитов, способность свертывания при кровотечении. Плазма представляет собой бесцветную жидкость, в которой взвешены форменные элементы крови. Плазма содержит белки, аминокислоты, ферменты, гормоны, минеральные вещества. Белки участвуют в процессе свертывания крови, поддерживают постоянные реакции крови.(pH) При повреждении кровеносного сосуда образуется сгусток крови, который начинает свертываться. Свертывающиеся свойства крови предохраняют организм от кровопотери.

Стадии: – из поврежденных тромбоцитов и клеток тканей выделяется тромбопластина. Кровь не свертывается – гемофилия; — белок плазмы крови протромбин при участии тромбоцита превращается в активный фермент тромбин; — фибриноген вырабатывает фибрин. Свертывание крови – превращение жидкой крови в эластичный сгусток в результате перехода растворенного в плазме крови белка фибриногена в нерастворимый фибрин при истечении крови из поврежденного сосуда. Фибрин, полимеризуясь, образует тонкие нити, удерживающие кровяные тельца. Таким образом образуется сгусток крови, закупоривающий пораженное место. Время свертывания у разных организмов сильно различается (у человека 5-12 минут).

Билет 26.

Билет № 27

  1. Хромосомные мутации: аберрация, полиплоидия, гетероплоидия; механизмы их возникновения. Значение для биологии и медицины.
  2. Ауто- , гемо- и гетеротрансплантация. Пути преодоления тканевой несовместимости. Искусственные органы.
  3. .

Ответы

1. В основе изменения структуры хромосомы, как правило, лежит первоначальное нарушение ее целостности – разрывы, которые сопровождаются различными перестройками, называемыми хромосомными мутациями или аберрациями.

Разрывы хромосом происходит закономерно в ходе кроссинговера, когда они сопровождаются обменом соответствующими участками между гомологами. Разрывы хромосом могут возникать также под влиянием различных мутагенных факторов, главным образом физических (ионизирующего и др. видов излучения), некоторых химических соединений, вирусов. Нарушение целостности хромосомы может сопровождаться поворотом ее участка, находящегося между двумя разрывами, на 1800 – инверсия.

Хромосомные перестройки, как правило, появляются в изменение морфологии хромосом.

Особую категорию хромосомных мутаций представляют аберрации, связанные с центрическим слиянием или разделением хромосом, когда две негомологические структуры объединяются в одну – робертсоновская транслокация, или одна хромосома образует две самостоятельные хромосомы. При таких мутациях не только появляются хромосомы с новой морфологией, но и изменяется их количество в кариотипе. Чаще всего такие структурные изменения хромосом отрицательно сказываются на жизнеспособности отдельных соматических клетках организма.

Полиплоидия – увеличение в кариотипе зиготы числа набора хромосом. Во втором делении мейоза она вступает не гаплоидной, а диплоидной. Из нее образуются диплоидные гаметы. Оплодотворение таких гамет приводит к образованию триплоидных организмов.

Гетероплоидные — изменения числа хромосом не кратные гаплоидному набору.

Несмотря на неблагоприятные последствия хромосомной мутации, иногда они оказываются совместимыми с жизнью клетки и организма и обеспечивает возможность эволюции структуры хромосом, лежащей в основе биологической эволюции.

2.ТРАНСПЛАНТАЦИЯ (на средневековой латыни transplantatio — пересаживание), пересадка органов и тканей человека и животных. Используется трансплантация кожи, мышц, нервов, роговицы глаза, жировой и костной ткани, костного мозга, сердца, почек и др. Особый вид трансплантации — переливание крови. При экспериментах на животных и в клинической медицине применяют ауто — (трансплантация собственных тканей), гомо-(трансплантация от донора того же вида) и гетеротрансплантацию (трансплантация от донора другого вида, например собаке от кролика). Проблемы трансплантации изучает трансплантология.

Пересадка тканей.Гомотрансплантаты, т.е. ткани одного и того же организма или однояйцовых близнецов (например, при пересадке кожи или пластических операциях), обычно хорошо приживляются на новом месте. Иммунологическая реакция не развивается, так как гены и кодируемые ими белки в пересаженной ткани и клетках реципиента абсолютно одинаковы. Если же ткань взята от донора, не связанного с реципиентом близким родством, она может сохраняться на месте пересадки некоторое время, но затем отторгается. Подбор донора по тканевой совместимости с реципиентом имеет жизненно важное значение при пересадках сердца, почек и других органов. Гены, ответственные за приживляемость или отторжение пересаженной ткани, образуют т.н. «главный комплекс гистосовместимости».

Билет № 28

  1. Структурные нарушения (аберрации) хромосом. Классификация и зависимость от изменения наследственного материала. Механизм возникновения, значение для биологии и медицины.
  2. Биологические ритмы. Медицинское значение хронобиологии.

1. В основе изменения структуры хромосомы, как правило, лежит первоначальное нарушение ее целостности – разрывы, которые сопровождаются различными перестройками, называемыми хромосомными мутациями или аберрациями.

Разрывы хромосом происходит закономерно в ходе кроссинговера, когда они сопровождаются обменом соответствующими участками между гомологами. Нарушение кроссинговера, при котором хромосомы обмениваются неравноценным генетическим материалом, приводят к появлению новых групп сцепления, где отдельные участки выпадают — делеции – или удваиваются – дупликации. При таких перестройках изменяется число генов в группе сцепления.

Поворот участка хромосомы, находящегося между двумя разрывами, на 1800 – инверсия.

Фрагмент хромосомы, отделившийся от нее при разрыве, может быть утрачен клеткой при очередном митозе, если он не имеет центромеры. Чаще такой фрагмент прикрепляется к одной из хромосом – транслокация. Нередко две поврежденные негомологичные хромосомы взаимно обмениваются оторвавшимися участками – реципрокная транслокация. Возможно присоединение фрагмента к своей хромосоме, но в новом месте – транспозиция. Таким образом, различные виды инверсии и транслокации характеризуются изменением локализации генов.

Описанные структурные изменения хромосом сопровождаются изменением генетической программы, получаемой клетками нового поколения после деления материнской клетки. Чаще всего такие структурные изменения хромосом отрицательно сказываются на жизнеспособности отдельных соматических клетках организма.

Конъюгация и последующее расхождение структур, образованными хромосомами, приводит к появлению новых хромосомных перестроек. В результате гаметы, получая неполноценный материал, не способны обеспечить формирование нормального организма нового поколения.

Изменения хромосомной организации, чаще всего оказывающие неблагоприятное воздействие на жизнеспособность клетки и организма, с определенной вероятностью могут быть перспективными, наследоваться в ряду поколений клеток и организмов и создавать предпосылки для эволюции хромосомной организации наследственного материала.

2. Биологические ритмы — фундаментальное свойство органического мира, обеспечивает его способность адаптации и выживания в циклически меняющихся условиях внешней среды.

Биоритмы — циклические колебания интенсивности и характера биологических процессов и явлений. Одни биологические ритмы относительно самостоятельны (частота сокращений сердца, дыхания), другие связаны с приспособлением организмов к геофизическим циклам — суточным (колебания интенсивности деления клеток, обмена веществ, двигательной активности животных), приливным (биологические процессы у организмов, связанные с уровнем морских приливов), годичным (изменение численности и активности животных, роста и развития растений и др.). Наука о биологических ритмах — хронобиология.

Хронобиология – наука, комбинирующая исследования и количественно оценивающая механизмы временной структуры. Одна из современных областей биологии, изучает механизмы регуляции суточных ритмов митотической активности, что имеет важное значение для медицины.

  1. Генные мутации, молекулярные механизмы их возникновения, частота мутаций в природе. Биологические антимутационные механизмы.
  2. Популяционная структура вида. Генетическая структура популяции.
  3. Значение медико-биологических дисциплин для формирования мировоззрения специалиста по электронной медицинской аппаратуры.

Ответы

1. Генные мутации – нескорректированные изм. хим. структуры генов, воспроизводимые в последовательных циклах репликации и проявляющиеся у потомства в виде новых вариантов признаков.

Мутации по типу замена азотистых оснований. Эти мутации происходят в силу причин: одной из них может быть возникающее случайно или под влиянием конкретных хим. агентов изменения структуры основания, уже вкл. в спираль ДНК. Если такая измененная форма основания остается не замеченной ферментами репарации, то при ближайшем цикле, репликации она может присоединять к себе др. нуклеотид.

Мутации со сдвигом рамки считывания. Этот тип мутации составляет значительную долю спонтанных мутаций. Они происходят вследствие выпадения или вставки в нуклеотидную последовательность ДНК одной или нескольких пар комплементарных нуклеотидов.

Мутации по пути инверсии нуклеотидных последовательностей в гене. Данный тип мутации происходит вследствие поворота участка ДНК на 1800. Этому предшествует образование молекулой ДНК петли, в пределах которой репликация идет в направлении, обратном правильному.

Антимутационные механизмы: речь идет об особенностях функционирования ДНК – полимеразы, отбирающей требуемые нуклеотиды в процессе репликации ДНК, а также осуществляющей самокоррекцию при образовании новой цепи ДНК наряду с редактирующей экдонуклеазой.

Фактором защиты против неблагоприятных последствий генных мутаций служит парность хромосом в диплоидном кариотипе соматических клеток эукариот. Парность аллейных генов препятствует фенотипическому проявлению мутаций, если они имеют рецессивный характер.

В снижение вредных последствий генных мутаций вносит явление экстракопирование генов, кодирующих жизненно важные макромолекулы. Пример, гены рРНК, тРНК, гистоновых белков, без которых жизнедеятельность любой клетки невозможна.

Перечисленные механизмы способствуют сохранению отобранных в ходе эволюции генов и одновременно накоплению в генофонде популяции различных ей аллелей, формируя резерв наследственной изменчивости.

2.Видом называют совокупность особей, сходных по основным морфологическим и функциональным признакам, кариотипу, по­веденческим реакциям, имеющих общее происхождение, заселяю­щих определенную территорию (ареал), в природных условиях скрещивающихся исключительно между собой и при этом произ­водящих плодовитое потомство.

Важнейшим фактором объединения организмов в виды служит половой процесс. Представители одного вида, скрещиваясь друг с другом, обмениваются наследственным материалом. Это ведет к перекомбинации в каждом поколении генов (аллелей), составляю­щих генотипы отдельных особей. Благодаря половому процессу происходит также объединение генов (аллелей), распре­деленных по генотипам разных особей, в общий генофонд (аллелофонд) вида.

Популяцией называютминимальную самовоспроизводящуюся группу особей одного вида, населяющих определенную территорию (ареал) достаточно долго (в течение многих поколений).

Генетически популяция характеризуется ее генофондом (аллелофондом). Он представлен совокупностью аллелей, образующих генотипы организмов данной популяции. Наследственное разнообразие заключается в присутствии в гено­фонде одновременно различных аллелей отдельных генов.

Генетическое единство популяции обусловливается достаточ­ным уровнем панмиксии. В условиях случайного подбора скрещи­вающихся особей источником аллелей для генотипов организмов последовательных поколений является весь генофонд популяции.

3. Анатомия человека и животных – наука о внутреннем строении. Гистология – наука о тканях. Физиология – наука о жизнедеятельности целостного организма и его частей. Биохимия – наука изучающая входящие в состав организма химические вещества, их структуру, распределение, превращения и функции. Биофизика – наука о физических и физико-химических явлениях живых организмов. Генетика – наука о законах наследственности и изменчивости организмов и методах управления ими. Патологическая физиология – это наука о патологических физиологических процессах в организме. Цитология — наука о клетках.

Билет № 30

  1. Модификационная изменчивость. Норма реакции генетически детерминированных признаков. Фенокопии. Адаптивный характер модификации. Роль наследственности и среды в развитии, обучение и воспитание человека.

Ответы

1. Фенотипические изменения, возникающие на основе одного и того же генотипа в различных условиях ее реализации, наз. модификациями. Примеры модификации: содержание жира в молоке животных или массы тела в зависимости от их питания, количество эритроцитов в крови, в зависимости от парциального давления кислорода в воздухе, и др.

Т. к. фенотипическое проявление наследственной информации может модифицироваться условиями среды, в генотипе организма запрограммировано лишь возможность их формирования в определенных пределах, называемых нормой реакции. Норма реакции представляет собой пределы модификационной изменчивости признака, допускаемой при данном генотипе.

Фенотипическое проявление информации, заключенный в генотипе, хар. показателями пенетрантности и экспрессивности. Пенетрантность отражает частоту фенотипического проявления имеющейся в генотипе информации. Она соответствует проценту особей, у кот. доминантный аллель гена проявился в признак, по отношению ко всем носителям этого аллеля.

Экспрессивность также явл. показателем, характеризующим фенотипическое проявление наследственной информации. Она хар. степень выраженности признака и зав. от дозы соответствующего аллеля гена при моногенном наследовании или от суммарной дозы доминантных аллелей генов при полигенном наследии и от факторов среды.

Генетика – это наука изучающая наследственность и изменчивость, а также закономерности передачи наследуемых признаков от поколения к поколению.

Наследственность – это способность организмов сохранять и передавать особенности своего строения, функций и развития своему потомству. Свойство обеспечивать материальную и функциональную преемственность в ряду поколений и характер индивидуального развития при постоянно меняющихся условиях окружающей среды.

Изменчивость — явление противоположное наследственности. Оно заключается в изменении наследственных особенностей и их проявлений в процессе развития организма.

Ген – это элементарная единица наследственности, участок молекулы ДНК, определенный локус хромосомы. Один ген кодирует одну полипептидную цепь, тем самым определяя развитие признака. В диплоидном наборе соматических клеток эукариот содержатся 2 гомологичные хромосомы и соответственно 2 гена, определяющие развитие какого-либо одного признака.

Гены, расположенные в одних и тех же локусах гомологичных хромосом и контролирующие развитие одного признака называются аллельными генами.

Кроме аллельных могут быть и неаллельные гены. Гены могут неоднократно мутировать, сто приводит к появлению нового варианта признака. В результате возникает несколько аллельных генов. Совокупность таких аллельных генов, определяющих многообразие вариантов проявления признака называется серией множественных аллелей.

Генотип – это совокупность всех генов одного организма. В зависимости от того, какие аллельные гены определяют развитие конкретного признака в популяции может быть 3 варианта генотипов.

Признак по своему проявлению может быть доминантным или рецессивным или гетерозиготным. Если в генотипе аллельные гены одинаковые, то оба контролируют проявление доминантного признака, то такие особи называются гомозиготными по доминантному признаку, если рецессивных признаков, то гомозиготные по рецессивному признаку. Если признак контролируется разными аллельными генами, то гетерозиготным.

Наследуемый признак называется феном, совокупность всех признаков организма – фенотипом.

Совокупность всех генов популяции называется генофонд.

Геном – совокупность гаплоидного набора хромосом, полученных от отцовской и материнской особи.

Каждая соматическая клетка имеет диплоидный набор хромосом, каждая хромосома имеет гомологичную парную хромосому. Исключение составляют 2 половые хромосомы, которые в зависимости от пола могут иметь или не иметь гомологичных себе. Они называются парой половых хромосом. Остальные одинаковые хромосомы называются аутосомами. У человека 46 хромосом в соматических клетках. Половые клетки, гаметы, содержат гаплоидный одинарный набор хромосом.

З-ны Менделя:

1. Закон единообразия гибридов первого поколения.

2. Закон расщепления.

3. Закон независимого наследования признака.

Принцип чистоты гамет.

Закон Моргана. Закон сцепленного наследования генов.

Методы диагностики:

1 Близнецовый метод

2 Клинико-генеалогический метод

3 Цитогенетический (цитологический)

4 Популяционно-статистический

5 Биохимический (иммунологический)

6 Онтогенетический

7 Дерматоглифический

8 Метод моделирования

9 Геномная дактилоскопия

10 Методы клинической генетики:

a) Метод изучения ДНК

b) Метод секвинирования нуклеотидных последовательностей.

 

 

Билет № 16

Методы изучения наследственности человека. Генеалогический и близнецовый методы, их значение для медицины.

3. Предмет основы биологии человека и животных и его место среди других медико-биологических дисциплин для специалиста по медицинской аппаратуре.

Ответ 1. К методам, широко используемым при изучении генетики че­ловека, относятся генеалогический, популяционно-статистический, близнецовый, метод дерматоглифики, цитогенетический, биохими­ческий, методы генетики соматических клеток.

Генеалогический метод —составление и анализ родословных. При составлении родо­словных исходным явля­ется человек—пробанд, родословную которого изучают. Обычно это или больной, или носитель определенного признака, на­следование которого необ­ходимо изучить. При составлении родословных таблиц используют условные обозначения. Поколения обозначают римскими цифрами, индивидов в данном поколении—арабскими.

С помощью метода установляется наследственная обусловленность изучаемого признака, тип его наследования. При анализе родословных по нескольким признакам выявляется сцепленный характер их наследования, что исполь­зуют при составлении хромосомных карт. Метод позволяет изучать интенсивность мутационного процесса, оценить экспрес­сивность и пенетрантность аллеля. Используется в медико-генетическом консультировании для прогнозирования по­томства. Генеалогический анализ существенно осложняется при малодетности семей.

Близнецовый метод.Этот метод заключается в изучении закономерностей наследо­вания признаков в парах одно- и двуяйцевых близнецов. Применение: изучение наслед­ственности и изменчивости у человека для определения соотноси­тельной роли наследственности и среды в формировании различных признаков, как нормальных, так и патологических, оценить эффективность действия на организм неко­торых внешних факторов (лекарственных препаратов, обучения, воспитания).

Ответ 3.

Все методы диагностики основаны на биологических принципах.

Термин биология (от греч. биос —жизнь, логос — наука) введен в начале XIX в. независимо Ж.-Б. Ламарком и Г. Тревиранусом для обозначения науки о жизни как особом явлении природы. В настоящее время его используют и в ином смысле, относя к группам организмов, вплоть до вида (биология микроорганизмов, биология северного оленя, биология человека), биоценозам (биология аркти­ческого бассейна), отдельным структурам (биология клетки).

Современная биология представляет комплекс, систему наук.


Рекомендуемые страницы:

lektsia.com

Роль близнецового метода в исследовании наследственности и среды в формировании признаков. Проблема предрасположенности к заболеваниям. Факторы риска.

⇐ ПредыдущаяСтр 20 из 25Следующая ⇒

Близнецовый метод был введен Ф. Гальтоном. Он разделил близнецов на однояйцевых (монозиготных) и двуяйцовые (дизиготных).

Близнецовый метод используется для определения степени влияния среды и наследственности на развитие какого-либо признака.

Конкордантность – процент сходства между близнецами.

Дискондартность – процент различия в проявлении признака.

Если коэффициент наследственности больше 1, то признак наследственный.

Если от 0,5 до 1, то признак возник под влияние окружающей среды.

Родословная карта является средством в генеалогическом методе исследования наследственности.

Суть этого метода состоит в том, чтобы выяснить родственные связи и проследить наличие нормального или патологического признака среди близких и дальних родственников в этой семье. После сбора всех необходимых данных составляется родословная карта, отражающая все собранные сведения.

Наследственность и среда. В генетической информации заложена способность развития определенных свойств и признаков. Эта способность реализуется лишь в определенных условиях среды. Одна и та же наследственная информация в измененных условиях может проявится по разному. Норма реакции – диапазон изменчивости, в пределах которой в зависимости от условий среды один и тот же генотип способен давать разные фенотипы.

Характеристика гельминтов – паразитов человека Тюменской области.

Гельминты – паразитические многоклеточные организмы, относящиеся к низшим червям надтипа сколецида (Scolecida).

Характерная особенность многоклеточных – наличие в их жизненном цикле сложного индивидуального развития (онтогенеза) – из оплодотворенного яйца образуется взрослый организм в результате дробления зародышевых клеток и образования зародышевых листков с последующим формированием органов и тканей.

Возбудители гельминтозов человека отличаются сложным и разнообразным циклом развития. Все паразитические черви разделяются на геогельминты и биогельминты. У геогельминтов цикл развития связан с условиями внешней среды. Биогельминты развиваются с обязательным участием промежуточного хозяина.

Классификация гельминтов

Гельминты относятся к царству животных (Animania).

В организме человека паразитируют в основном два типа гельминтов: плоские и круглые черви. Наиболее часто встречающиеся у человека виды гельминтов относятся к следующим классам: трематоды, или сосальщики; цестоды, или ленточные черви; нематоды, или круглые черви.

БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ПАРАЗИТОВ ТИПА ПЛОСКИЕ ЧЕРВИ

Двустороннесимметричные (билатеральные) животные.

Тело покрыто кожно-мускульным мешком.

Тело не имеет полости (бесполостные) или паранхематозные животные.

Пищеварительный канал: передняя и средняя кишка, замкнутая слепо. У некоторых вообще отсутствует.

Нервная система: парные мозговые ганглии, переходящие в нервные стволы.

Кровеносная и дыхательная системы отсутствуют.

Выделительная система: протонефридии – система канальцев.

Половая система гермафродитна: сложная система протоков и органов для внутреннего оплодотворения.

Биологические особенности гельминтов класса трематод

Половозрелая стадия сосальщиков называется марита. Тело мариты листообразное от 2 до 80 мм длиной. На брюшной поверхности тела у них имеются органы фиксации – две присоски: ротовая и брюшная. Большинство сосальщиков гермафродиты.

Основными хозяевами трематод являются позвоночные животные и человек, а первыми (обязательными для всех) промежуточными хозяевами – различные виды пресноводных моллюсков. Характерной особенностью жизненного цикла сосальщиков является бесполое размножение личиночных стадий (полиэмбриония).

Марита откладывает яйца в организме основного хозяина, которые выводятся во внешнюю среду. Для дальнейшего развития яйцо, как правило, должно попасть в воду. Из яйца выходит личинка – мирацидий. Он имеет овальную форму, ресничный покров, светочувствительный глазок и протонефридии. В задней части тела мирацидия находятся зародышевые клетки. Мирацидий плавает в воде и активно проникает в тело промежуточного хозяина – моллюска. В печени моллюсков он превращается в спороцисту мешковидной формы. В спороцисте из зародышевых клеток развивается новое личиночное поколение – редии. У редий формируются зачатки пищеварительной, нервной и выделительной систем. В теле редий из зародышевых клеток развиваются церкарии. Они выходят из тела моллюска и с помощью хвостового придатка свободно плавают в воде. У церкариев развиты все системы органов за исключением половой. Церкарии некоторых видов трематод на переднем конце тела имеют острый стилет, с помощью которого они проникают в тело второго промежуточного хозяина. Личиночные стадии, развивающиеся в теле первого промежуточного хозяина, называются партениты.

У большинства видов трематод имеется второй промежуточный хозяин (рыбы, раки, крабы). Церкарии проникают в тело второго промежуточного хозяина и превращаются там в метацеркариев, вокруг которых формируются две оболочки.

Таким образом, для основного хозяина (человек) инвазионными стадиями могут быть: метацеркарии, адолескарии или церкарии.

БИЛЕТ № 46

Основные понятия популяционной генетики (элементарный эволюционный материал, элементарное эволюционное явление, элементарные эволюционные факторы). Дефиниция «эволюция» в свете популяционной генетики.

Сложность процессов, лежащих в основе онтогенеза, трудный и продолжительный путь их изучения стали одной из причин появления, развития и’ существования идеалистических течений в эмбриологии, а затем и в биологии развития. Так, витализм допускал наличие в организмах особей нематериальной жизненной силы. В VII веке Я. ван Гельмонт создал учение об «археях» — духовных началах, управляющих деятельностью и развитием органов тела. В XVIII веке Г. Шталь полагал, что целесообразное устройство организма обеспечивает душа.

Первые микроскописты XVII века (Я. Сваммердам, М. Мальпиги, А. Левенгук) полагали, что зародыш находится в уже сформированном состоянии в яйцеклетке (овизм) или сперматозоиде (анималькулизм), а в процессе развития происходит лишь увеличение в размерах и уплотнение прозрачных ранее невидимых тканей. Так возник преформизм, основатели которого исходили из того, что структура будущего организма во всех деталях представлена в половых клетках. Преформизм основывался на креационизме (догме изначального творения всех живых существ) и заложенных в них зачатках всех будущих поколений («вложение зародышей»). В дальнейшем преформизм развивали Ш. Бонне, Л. Спалланцани и др.

Во второй половине XVIII века сформировалось учение о постепенном развитии и новообразовании, в ходе которого строение организма усложняется. Это учение, получившее название эпигенеза, развивалось
ПЛ. Мопертюи, Ж.Л. Бюффоном и особенно К.Ф. Вольфом (1734-1794), описавшим развитие зародыша курицы. В опубликованной в 1759 году знаменитой работе «Теория зарождения» К.Ф. Вольф продемонстрировал развитие зародышевых органов (кишечника, нервной системы) из примитивных пластов. Значительный вклад в теорию эпигенеза внёс К.М. Бэр (1792-1876), который в работе «История развития животных» (1828) показал преемственность последовательных стадий развития и усложнения строения зародыша, обнаружил сходство плана строения зародышей , оказавшегося тем большим, чем на более ранних этапах развития они рассматриваются (закон «зародышевого сходства» К.М. Бэра). Утверждающаяся концепция эпигенеза способствовала успешному развитию эмбриологии.
Однако в конце XIX века в связи с успехами цитологии оживились преформистские взгляды, которые обобщили В. Ру (1850-1924) и другие основатели неопреформизма. Они утверждали, что каждый участок яйцеклетки представляет будущую определённую часть организма (орган, систему органов)

Возрождение в конце XIX века эпигенетического учения в форме неоэпигенеза, к сожалению, в ряде случаев сопровождалось откатом на идеалистические позиции витализма. Так, X. Дриш (1867-1945), изучивший развитие морских ежей из бластомеров, пришёл к заключению, что пространственное упорядочение в развивающемся организме проходит под действием нематериального фактора — энтелехии. И только с развитием генетики в XX веке в эмбриологии получили распространение материалистические толкования закономерностей онтогенеза, основанные на признании ключевой роли генетической информации и факторов внешней среды в развитии живого организма.
Изменения в процессе онтогенеза включают изменения на разных уровнях организации особи: молекулярном, клеточном, тканевом, органном, системном. Являясь достаточно сложными, они исследуются учёными из различных областей биологии — генетиками, биохимиками, морфологами, эмбриологами и др. На стыке этих и других биологических дисциплин возникла самостоятельная биологическая наука — биология развития, которая стала преемницей механики развития и эмбриологии в середине XX века. Биология развития изучает наследственные, молекулярные и структурно-функциональные основы развития организмов, механизмы клеточных взаимодействий и регуляции онтогенеза, обеспечивающие дифференцировку клеток, тканей и органов, а также целостность онтогенеза. Достижения биологии развития открывают большие перспективы для практики. Успешно разрабатываются, в частности, научные основы управления развитием животных и растений, регуляции пола и численности животных, опухолевого роста и др.

 




infopedia.su

Open Library — открытая библиотека учебной информации

Биология Соотносительная роль наследственности и среды в формировании признака. Близнецовый метод изучения генетики человека.

просмотров — 274

Роль среды в формировании признаков. Модификационная изменчивость. Норма реакции. Характеристика модификаций и их биологическое значение.

В генетике индивидуального развития среда представляет собой сложное понятие. С одной стороны, это непосредственное окружение, в котором осуществляют свои функции отдельные гены и генотип в целом. Оно образовано всœей совокупностью факторов внутренней среды организма: клеточное содержимое (исключая ДНК), характер прямых межклеточных взаимодействий, биологически активные вещества (гормоны). Совокупность внутриорганизменных факторов, влияющих на реализацию наследственной программы, обозначают как среду 1-го порядка. Особенно большое влияние на функцию генотипа факторы этой среды оказывают в период активных формообразовательных процессов, прежде всœего в эмбриогенезе. С другой стороны, выделяют понятие окружающей среды, или среды 2-го порядка, как совокупности внешних по отношению к организму факторов.

Фенотипические изменения, возникающие на основе одного и того же генотипа в разных условиях его реализации, называют модификациями. Примером модификаций могут служить изменения содержания жира в молоке животных или массы тела в зависимости от их питания. Модификации отдельного признака или свойства, формируемого данным генотипом, образуют непрерывный ряд. Частота встречаемости каждого варианта в таком вариационном ряду различна. Чаще обнаруживаются средние значения признака. Чем дальше признак отстоит от среднего значения, тем реже он наблюдается.

Так как фенотипическое проявление наследственной информации может модифицироваться условиями среды, в генотипе организма запрограммировано не конкретное значение отдельных его характеристик, а лишь возможность их формирования в определœенных пределах, называемых нормой реакции. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, норма реакции представляет собой пределы модификационной изменчивости признака, допустимой при данном генотипе. Некоторые признаки характеризуются широкой нормой реакции. Как правило, это количественные признаки, контролируемые полигенами (масса тела, жирность молока, пигментация кожи), другие свойства характеризуются узкой нормой реакции и слабо или почти не модифицируются в разных условиях (цвет глаз, группа крови).

Взаимодействие наследственности и среды в развитии человека играет важную роль на протяжении всœей его жизни. Но особую важность оно приобретает в периоды формирования организма: эмбрионального, грудного, детского, подросткового и юношеского. Именно в это время наблюдается интенсивный процесс развития организма и формирования личности.

Наследственность определяет то, каким может стать организм, но развивается человек под одновременным влиянием обоих факторов — и наследственности, и среды. Сегодня становится общепризнанным, что адаптация человека осуществляется под влиянием двух программ наследственности: биологической и социальной. Все признаки и свойства любого индивида являются результатом взаимодействия его генотипа и среды. По этой причине каждый человек есть и часть природы, и продукт общественного развития.

Близнецовый метод заключается в изучении закономерностей наследования признаков в парах одно- и двуяйцевых близнецов. Сегодня данный метод широко применяют в изучении наследственности и изменчивости у человека для определœения соотносительной роли наследственности и среды в формировании различных признаков, как нормальных, так и патологических. Он позволяет выявить наследственный характер признака, определить пенетрантность аллеля, оценить эффективность действия на организм некоторых внешних факторов (лекарственных препаратов, обучения, воспитания).

Суть метода заключается в сравнении проявления признака в разных группах близнецов при учете сходства или различия их генотипов. Монозиготные близнецы, развивающиеся из одной оплодотворенной яйцеклетки, генетически идентичны, так как имеют 100% общих генов. По этой причине среди монозиготных близнецов наблюдается высокий процент конкордантных пар, в которых признак развивается у обоих близнецов. Сравнение монозиготных близнецов, воспитывающихся в разных условиях постэмбрионального периода, позволяет выявить признаки, в формировании которых существенная роль принадлежит факторам среды. По этим признакам между близнецами наблюдается дискордантность, ᴛ.ᴇ. различия. Напротив, сохранение сходства между близнецами, несмотря на различия условий их существования, свидетельствует о наследственной обусловленности признака.

Установление соотносительной роли наследственности и среды в развитии различных патологических состояний позволяет врачу правильно оценить ситуацию и проводить профилактические мероприятия при наследственной предрасположенности к заболеванию или осуществлять вспомогательную терапию при его наследственной обусловленности. Трудности близнецового метода связаны, во-первых, с относительно низкой частотой рождения близнецов в популяции (1:86—1:88), что осложняет подбор достаточного количества пар с данным признаком; во-вторых, с идентификацией монозиготности близнецов, что имеет большое значение для получения достоверных выводов.

oplib.ru

Лекция — Близнецовый метод изучения генетики, возможности метода. Определение соотносительной роли наследственности и среды в развитии признаков и патологических состояниях человека.

Близнецовый метод дает возможность дифференцировать роль среды и генотипа в развитии морфологических признаков, предрасположения к заболеваниям, психических особенностей.

Для дифференцировки роли наследственности и среды в проявлении различных признаков сравнивают одно (MZ монозиготные)- и двуяйцевых (DZ-дизиготные) близнецов. Различия, устанавливаемые в равной мере у однояйцевых и разнояйцевых близнецов, следует считать зависящими от внешних условий. Различия, обнаруживаемые у разнояйцевых близнецов и не отмеченные у однояйцевых, рассматриваются как результат различной наследственности. Если в сходных условиях среды признаки различны у партнеров двуяйцевой пары, но сходны у партнеров однояйцевой пары, их следует признать наследственными.

Этапы близнецового метода:

1) Составление близнецовой выборки ( не менее 10 пар)

2) Определение зиготности (по группе крови)

3) Сопоставление групп по MZ и DZ по изучаемым признакам

А) признак имеется у обоих близнецовых пар – сходные по фенотипы (называют конкордантными)

Б) признак имеющийся у одного близнеца из пары – дискордантная пара.

· С- число конкордантных пар

· Д- число дискордантных пар.

· Кр.- степень парной конкордантности.

Кр=С/(С+Д)*100%

Вычисляется для каждой группы близнецов. Для вычисления доли генотипа в развитии признака используется коэффициент Хольцингера (Н) или наследуемость.

Н= (Крmz-Крdz/(100-КРdz))*100%

· Если Н>0.7 (70%)—определяющую роль в развитии признака играет генотип (б. Дауна, Эпилепсия)

· Н<0,1-0,3 (10-30%)— определяющую роль играют факторы среды

Н близкая к 0,5 (50%) говорит о наследственной предрасположенности к развитию заболеваний т.е. о равномерном вкладе генотипа и сред

ronl.org

Роль близнецового метода в исследовании наследственности и среды в формировании признаков. Проблема предрасположенности к заболеваниям. Факторы риска.

Близнецовый метод — один из методов медицинской генетики, который применяется для оценки соотносительной роли наследственности и среды в развитии разнообразных признаков, аномалий строения, мультифакториальных заболеваний и особенно при изучении наследственных болезней с низкой пенетрантностыо. Этот метод, основанный на изучении внутрипарного различия близнецов, оказывается полезным в индивидуальной оценке реакции на применяемые медикаментозные средства, в исследовании этиологии и патогенеза болезни, различий в уровнях психического развития как здоровых лиц, так и больных, при разработке профилактических мероприятий с учетом влияния наследственных и внешнесредовых факторов.

С генетической точки зрения не все близнецы одинаковы. Выделяют монозиготных (однояйцевых) близнецов, которые генетически идентичны, так как развиваются из одной зиготы вследствие ее дробления с образованием двух эмбрионов. В связи с этим различия между однояйцевыми близнецами определяются главным образом факторами внешней среды. Особую группу среди монозиготных близнецов составляют необычные типы близнецов: двухголовые (как правило, нежизнеспособные), каспофаги (сиамские близнецы). Наиболее известны близнецы, родившиеся в 1811 году в Сиаме (ныне Таиланд), сиамские близнецы — Чанг и Энг. Они прожили 63 года, были женаты на сестрах-близнецах; у Чанга родилось 10 детей, а у Энга — 12 детей. Раньше операция по разделению близнецов была бы вряд ли возможна, однако в настоящее время разъединяют и более сложные связующие близнецов элементы.

Близнецовый метод широко применяется в изучении наследственности и изменчивости у человека для определения соотносительной роли наследственности и среды в формировании различных признаков, как нормальных, так и патологических. Суть метода состоит в сравнении проявления признака в разных группах близнецов при учете сродства или различия их генотипов.

Проблема наследственного предрасположения к хроническим неинфекционным заболеваниям за последнее время выдвинулась в ряд ведущих в современной клинической медицине. По степени удельного веса наследственных факторов в патогенезе болезней человека последние могут быть расположены в ряд, начиная от заболеваний, в развитии которых наследственные факторы играют основную роль, до болезней, при которых их значение практически не ощутимо (рис. 1).



 

Развитие таких заболеваний, как болезнь Дауна, гемофилия, фенилкетонурия, полностью определяется наследственными факторами. Внешние факторы в этом случае не играют существенной роли. Эта группа собственно наследственных болезней, детерминируемых одним главным геном, получила название «моногенно наследуемые заболевания». Их наследование подчиняется основным менделевским правилам, и достижения клинической генетики связаны с изучением именно этой группы болезней. Однако удельный вес моногенно наследуемых мономутантных в общей структуре наследственно обусловленных болезней не велик и составляет всего лишь 6-8 %. На противоположном полюсе от этих заболеваний находятся болезни, развитие которых почти целиком определяется фактором внешней среды: травматические поражения, ожоги и т. п. Наследственные факторы могут формировать лишь некоторые особенности течения этих заболеваний.

Характеристика гельминтов – паразитов человека Тюменской области.

См.прошлые билеты

Билет 46

Основные понятия популяционной генетики (элементарный эволюционный материал, элементарное эволюционное явление, элементарные эволюционные факторы). Дефиниция «эволюция» в свете популяционной генетики.

ОСНОВНЫЕ ПОНЯТИЯ ПОПУЛЯЦИОННОЙ ГЕНЕТИКИ

Частоты генотипов и аллелей. Важнейшим понятием популяционной генетики является частота генотипа – доля особей в популяции, имеющих данный генотип. Рассмотрим аутосомный ген, имеющий k аллелей, A1, A2, …, Ak. Пусть популяция состоит из N особей, часть которых имеет аллели Ai Aj. Обозначим число этих особей Nij. Тогда частота этого генотипа (Pij) определяется как Pij = Nij/N. Пусть, например, ген имеет три аллеля: A1, A2 и A3 – и пусть популяция состоит из 10000 особей, среди которых имеются 500, 1000 и 2000 гомозигот A1A1, A2A2 и A3A3, а гетерозигот A1A2, A1A3 и A2A3 – 1000, 2500 и 3000 соответственно. Тогда частота гомозигот A1A1 равна P11 = 500/10000 = 0,05, или 5%. Таким образом мы получаем следующие наблюдаемые частоты гомо- и гетерозигот:

 

P11 = 0,05, P22 = 0,10, P33 = 0,20,

 

P12 = 0,10, P13 = 0,25, P23 = 0,30.

 

Еще одним важным понятием популяционной генетики является частота аллеля – его доля среди имеющих аллелей. Обозначим частоту аллеля Ai как pi. Поскольку у гетерозиготной особи аллели разные, частота аллеля равна сумме частоты гомозиготных и половине частот гетерозиготных по этому аллелю особей. Это выражается следующей формулой: pi = Pii + 0,5ЧеjPij. В приведенном примере частота первого аллеля равна p1 = P11 + 0,5Ч(P12 + P13) = 0,225. Соответственно, p2 = 0,300, p3 = 0,475.

 

Соотношения Харди – Вайнберга. При исследовании генетической динамики популяций, в качестве теоретической, «нулевой» точки отсчета принимают популяцию со случайным скрещиванием, имеющую бесконечную численность и изолированную от притока мигрантов; полагают также, что темпы мутирования генов пренебрежимо малы и отбор отсутствует. Математически доказывается, что в такой популяции частоты аллелей аутосомного гена одинаковы для самок и самцов и не меняются из поколения в поколение, а частоты гомо- и гетерозигот выражаются через частоты аллелей следующим образом:

 

Pii = pi2, Pij = 2pi pj.

 

Это называется соотношениями, или законом, Харди – Вайнберга – по имени английского математика Г.Харди и немецкого медика и статистика В.Вайнберга, одновременно и независимо открывших их: первый – теоретически, второй – из данных по наследованию признаков у человека.


Рекомендуемые страницы:


Воспользуйтесь поиском по сайту:

megalektsii.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о