Что такое наследственность? Какие биологические признаки наследует человек?
Уже в 5 классе в России начинают преподавать «Обществознание». Многие задаются вопросом — «Что такое наследственность и какие биологические признаки наследует человек? В данной статье мы попробуем подробно разобраться с этим.
Что такое наследственность?
Наследственность — способность человека и существ передавать свои признаки, свойства, качества, особенности развития потомству. Такая способность позволяет всем живым существам (бактерии, растения или грибы) сберечь в своих потомках типичные черты вида.
Какие биологические признаки наследует человек от родителей? В частности, он наследует черты национальности и расы, например, тип фигуры, кожи, цвет волос или кожи, черты лица и т.д.
Также стоит отметить, что по наследству передаются не только внешние признаки и большинство биохимических качеств организма (группа крови, обмен веществ и прочее), но и различные болезни, либо склонность к болезненным состояниям.
Какие биологические признаки наследует человек?
Такие дисциплины, как антропология и обществознание выделяют такие две основные части:
- Физиологические признаки: строение мозга, стопы, челюсти, позвоночника, развитие кисти, анатомические особенности, атавизмы, восстанавливающие организмы (редуценты).
- Ключевые инстинкты размножения и самосохранения (правильный сон, питание, лечение).
Также читайте — Чем человек отличается от животного? Отличия человека и животных
pristor.ru
Генетика человека. Методы изучения наследственности человека. Наследственные заболевания, их профилактика.
Население земли насчитывает более шести миллиардов человек, при этом не существует двух совершенно одинаковых людей (за исключением однояйцевых близнецов). Причины заключаются в огромном количестве возможных наследственных генотипических комбинаций. В геноме человека от 50 до 100 тысяч генов, расположенных в 46 хромосомах. Если бы у человека в каждой хромосоме был один ген, то и тогда число из возможных комбинаций было равно 223. Каждый человеческий генотип своеобразен и неповторим. На самом деле количество возможных наследственных комбинаций будет намного больше, ибо не учтен перекрест между гомологичными хромосомами и различия по гомологичной паре более чем по одному гену.
Действие закономерностей наследственности распространяется и на человека. Достигнуты большие успехи в изучении кариотипа человека, расшифрованы нуклеотидные последовательности почти всех генов, изучен характер наследования более чем двух тысяч признаков. Установлено, что существуют болезни, обусловленные наследственными факторами. Эти заболевания можно предупреждать и лечить, для чего были разработаны методы изучения генотипа человека. Изучение наследственности человека представляет значительные трудности. К человеку неприложимы методы экспериментальной генетики. Человек размножается медленно, и каждая пара имеет относительно небольшое число детей. Какие методы используются и медицинской генетике, изучающей наследственные заболевания людей? Таких основных методов четыре:
Генеалогический – заключается в изучении родословной людей за возможно большее число поколений. Это позволило установить характер наследования многих признаков (доминантных и рецессивных), и ряда наследственных заболеваний (например, гемофилии).
Генеалогическим методом установлено, что развитие некоторых способностей человека (например, музыкальности, склонности к математическому мышлению) определяется наследственными факторами. Разумеется, проявление тех или иных генотипически обусловленных психических особенностей человека, в том числе и одаренности, определяется социальной средой, под влиянием которой и формируется в человеческом обществе личность.
Генеалогическим методом
доказано наследование многих заболеваний, например, некоторых болезней обмена веществ, в том числе и сахарного диабета (рецессивный). Существует врожденная рецессивная глухота. Некоторые формы тяжелого психического заболевания – шизофрении тоже наследственны. Известны наследственные заболевания, определяемые не рецессивными, а доминантными генами, например, ведущая к слепоте наследственная дегенерация роговицы. Предрасположенность к заболеванию туберкулезом носит наследственный характер.Близнецовый – состоит в изучении развития признаков у однояйцевых близнецов. Он дает возможность выяснить, какие качества определяет внешняя среда, а какие – наследственность. Известно, что у человека близнецы бывают двух категорий. В одних случаях оплодотворяется не ода яйцеклетка, а две. При этом рождаются дети одного или разных полов, похожие друг на друга как братья и сестры, не являющиеся близнецами. Но иногда одна яйцеклетка дает начало двум (трем, четырем) эмбрионам. Тогда получаются однояйцевые близнецы, которые всегда относятся к одному полу и обнаруживают поразительное сходство друг с другом. Это понятно, так как они обладают одинаковым генотипом, а различия между ними обусловлены исключительно влиянием среды в развитии физических и психических свойств человека.
Биохимический – обнаружение изменений в биологических параметрах (например, сахарный диабет). Это заболевание обусловлено нарушением нормальной деятельности поджелудочной железы, которая не выделяет в кровь необходимого количества гормона инсулина. В результате повышается содержание сахара в крови, и происходят глубокие нарушения обмена веществ человеческого организма.
Все большее значение приобретает генетика для медицины. Многие отклонения от нормы и болезни человека обусловлены генотипически. Это особенно отчетливо удается установить в тех случаях, когда у человека происходят изменения в числе хромосом. Такие хромосомные нарушения связаны со случайными отклонениями в ходе мейоза.
ebiology.ru
Можно ли влиять на наследственность? Поведение и гены
Пожалуй, каждый когда-либо слышал подобные фразы: «весь в отца», «яблоко от яблони…», «на маму похожа». Все это говорит о том, что люди отмечают родственное сходство. Человеческая наследственность — способность организма на генетическом уровне передавать собственные черты будущему поколению. Можно ли влиять на наследственность? Прямого и эффективного воздействия на это не существует, однако есть определенные способы предотвратить развитие в характере человека негативных черт, полученных от родителей или других предков.
Что передается по наследству
Согласно исследованиям, любой индивидуум может передать своему потомству не только какие-либо внешние черты, болезни, а еще и отношение к людям, темперамент, способности к наукам. По наследству передаются следующие позитивные и негативные особенности человека:
- Хронические заболевания (эпилепсия, психические заболевания и прочее).
- Возможность произведения на свет близнецов.
- Алкоголизм.
- Склонность к нарушению законов и асоциальному поведению.
- Суицидальные наклонности.
- Внешность (цвет глаз, форма носа и другое).
- Талант к какому-либо творчеству, ремеслу.
- Темперамент
- Мимика, тембр голоса.
- Фобии и страхи.
В данном списке указаны лишь некоторые признаки, передающиеся по наследству. Не стоит отчаиваться, если одна из негативных особенностей встречается у вас или ваших родителей, совсем необязательно, что она в полной мере раскроется именно в вас.
Можно ли влиять на наследственность, определив, что у человека имеется предрасположенность к нарушению закона? Согласно психологическим и социологическим исследованиям, предотвратить негативную ситуацию можно только в том случае, если будут соблюдаться определенные условия.
Влияние генов
Генетикой доказано, что человек в точности перенимает предпочтения и страхи его родителя. Уже во время формирования плода происходит закладка некой генетической памяти, которая впоследствии даст о себе знать, проявившись под воздействием каких-либо факторов.
Можно ли влиять на наследственность? Обществознание, как и другие науки об обществе и человеке, сходятся здесь в одном: да, влиять на нее не только можно, но и нужно. Несмотря на то что гены и поведенческие особенности индивидуума тесно взаимосвязаны, наследственность не предопределяет его будущее. К примеру, если отец является вором или убийцей, то совсем не обязательно, что ребенок станет таким. Хотя вероятность подобного развития событий все же высока, и у потомка преступника больше шансов попасть за решетку, чем у ребенка из благополучной семьи, этого все же может не произойти.
Многие родители, обнаружив в генеалогическом дереве алкоголика или преступника, задаются вопросом о том, можно ли влиять на наследственность. Кратко на этот вопрос ответить нельзя, так как существуют различные факторы, усугубляющие развитие наследственных предрасположенностей. Главное — это своевременно обнаружить негативные особенности, передающиеся по наследству, и предотвратить их дальнейшее развитие, оградив ребенка от соблазнов и нервных срывов.
Наследственность и черты характера
При помощи генетической информации родители передают своим детям не только предрасположенность к определенным негативным жизненным ситуациям, но еще и характер, темперамент. В большинстве своем манера общения с окружающими имеет «природные» корни — наследственность. Поведение, заложенное генами, чаще используется детьми и подростками ввиду их не сформировавшегося до конца характера.
На дальнейшее развитие черт характера и поведенческих особенностей человека влияет темперамент, передающийся только по наследству. Его нельзя приобрести или развить, он складывается из черт матери или отца (деда, бабушки, дяди и других) либо из смешения нескольких особенностей поведения родителей. Именно от темперамента зависит то, как себя будет вести ребенок в будущем, а также то, какое место в социуме он займет.
Можно ли влиять на наследственность? (5 класс, обществознание). Ответ на вопрос
Нередко можно встретить заявления о том, что на наследственность можно повлиять при помощи прямого вмешательства в гены человека. Однако наука еще не настолько развита, чтобы воздействовать на организм на таком уровне. На наследственность можно повлиять за счет воспитательного процесса, обучения, психологических тренингов, а также с помощью воздействия на человека общества и семьи.
Факторы, влияющие на наследование поведения
Помимо генетической передачи, существуют и другие способы копирования родительских черт в поведении ребенка. Существуют факторы и определенные условия, при которых дети начинают перенимать, наследовать поведение и отношение к жизни от взрослых:
- Семья. То, как родители обращаются друг с другом и как они относятся к ребенку, глубоко проникает в его «подкорку» и закрепляется там в качестве нормальной модели поведения.
- Друзья и родственники. Отношение к посторонним людям также не остается без внимания детей — они перенимают поведенческие особенности родителей и в дальнейшем общаются с окружающими именно так.
- Быт, условия проживания.
- Материальная обеспеченность (бедность, зажиточность, средний уровень жизни).
- Количество членов семьи. Данный фактор в большей мере сказывается на будущем ребенка, на том, кого он изберет для создания семьи.
Дети полностью копируют своих родителей, но можно ли влиять на наследственность в данном случае? Да, но это полностью зависит от родителей. К примеру, если отец будет постоянно пить и избивать жену, то в будущем сын будет склонен к жестокости по отношению к женщинам, а также к алкоголизму. Но если в семье царят любовь и взаимопомощь, то эффект будет прямо противоположный предыдущему примеру. Стоит помнить, что мальчики копируют отцов, а девочки — поведение матерей.
Можно ли влиять на наследственность и почему это стоит делать
Саму генетическую предрасположенность к опасным заболеваниям устранить нельзя, однако можно значительно сократить вероятность развития болезни. Для этого необходимо вести здоровый образ жизни, не перенапрягаться, в меру заниматься спортом. Пытаться повлиять на наследственность нужно обязательно, так как это позволит оставаться здоровым длительное время.
Можно ли влиять на наследственность, пытаясь не поддаваться соблазнам? Этот вариант удобен, но ровно до того момента, как человек потеряет самоконтроль из-за нервного срыва или другой негативной ситуации (психологического потрясения, к примеру). Влиять на наследственность необходимо не только через контроль над своими слабостями, но и через круг общения. Ведь трезвенник, пускай и с генами алкоголика, никогда не запьет, если на то не будет причины: маргинального близкого окружения или потрясшей его трагедии.
fb.ru
Хромосомная генетическая наследственность человека ДНК
Наследственность — это биологическое явление, заключающееся в проявлении сходных морфологических или функциональных признаков в последовательных поколениях. Наследственность обусловлена наследственными факторами (генами) и подразделяется на ядерную, цитоплазматическую (внеядерную) и акариотическую, характерную для бактерий и вирусов, не имеющих ядра, свойственного высшим организмам. Тонкими опытами с пересадками и разрушением ядер яйцеклеток было показано, что морфологическая и функциональная преемственность между поколениями обеспечивается всеми самовоспроизводящимися структурами клетки: ядерными и цитоплазматическими (внеядерными), однако ядро, а точнее — входящие в его состав хромосомы (см.) являются главными носителями наследственной информации. Постоянство передачи признаков обеспечивается идентичным воспроизведением наследственного материала во время деления клеток (см. Митоз). Человеческий организм развивается из одной оплодотворенной яйцеклетки, в которой одна половина хромосом представлена от отца, а другая — от матери. Хромосомы содержат дезоксирибонуклеиновую кислоту, сокращенно ДНК (см. Нуклеиновые кислоты), с которой связаны сохранение и передача генетической информации из поколения в поколение. Каждый ген представляет собой определенный участок (локус) молекулы ДНК и содержит в среднем несколько сот нуклеотидов (отдельный нуклеотид — мононуклеотид — состоит из фосфорной кислоты, дезоксирибозы и пуринового или пиримидинового основания), сочетания которых обусловливают специфичность отдельного гена. Воспроизведение генов связано со способностью ДНК к удвоению с помощью специфических белков—ферментов, что обеспечивает передачу наследственной информации от родительской клетки к дочерним. Эта способность генов воспроизводить самих себя в процессе деления клеток является основой механизма наследственности. Процесс реализации генетической информации, записанной на ДНК, распадается на два этапа: транскрипции и трансляции. Транскрипция представляет собой первое звено реализации генетической информации — «снятие» ее с ДНК, а перевод последовательности нуклеотидов молекулы ДНК в последовательность аминокислот белковой молекулы называется трансляцией. Положение каждой тройки нуклеотидов (триплет) в молекуле ДНК определяет место включения аминокислот в белковую молекулу, образование которой происходит при участии рибонуклеиновых кислот, сокращенно РНК (см. Нуклеиновые кислоты). Схематически генетическая информация реализуется следующим образом: на ядерной ДНК, как на матрице, синтезируется молекула информационной РНК (и-РНК) — процесс транскрипции; и-РНК затем поступает в цитоплазму, где на нее «нанизываются» рибосомы, состоящие из рнбосомной РНК (однонитчатой) и белка. Другой тип рибонуклеиновых кислот — транспортные РНК (т-РНК) — доставляют к рибосоме аминокислоты, каждая из которых располагается в строгом соответствии с последовательностью триплетов и-РНК,— процесс трансляции. Для каждой аминокислоты имеется «своя» соответствующая т-РНК. После включения аминокислоты в строящуюся белковую цепь т-РНК высвобождаются и снова могут принимать участие в транспортировке аминокислот к рибосомам и «сборке» новых молекул белка. Под контролем генов из 20 известных в настоящее время аминокислот образуются различные белки организма.
В клетках, из которых построены ткани и органы человека (за исключением половых), содержатся одинаковые хромосомы и гены, но строение и функции клеток значительно отличаются даже в пределах одного и того же органа. Это связано с тем, что в развивающихся тканях происходит включение в действие одних и прекращение активности других генов. Под генетическим контролем клетки развиваются в различных направлениях, что и приводит к формированию разных тканей и органов. Каждый ген действует на определенной стадии развития и в определенной клеточной системе. По мере развития эмбриона все большее количество генов проявляет свою активность и, вступая в различного рода взаимодействия, способствует ослаблению или усилению контролируемых ими признаков. Чаще происходит подавление активности какого-либо гена или же создаются условия, препятствующие включению его в действие. Взаимодействие различных генов приводит к тому, что проявление эффекта (результата действия) одного и того же гена сильно варьирует, т. е. ген имеет различную экспрессивность (выраженность действия). Некоторые гены контролируют появление только одного признака, в то время как действие других приводит к возникновению множественных эффектов (плейотропии). Последнее может быть связано с контролированием геном развития какой-либо одной закладки, из которой в дальнейшем образуются различные органы. Плейотропия может возникать также в результате того, что гены, действуя в какой-либо одной клеточной системе, обусловливают синтез продуктов, влияющих на развитие других органов.
Гены расположены в хромосомах в линейном порядке. Если в одинаковых локусах пары хромосом присутствуют одинаковые аллели (т. е. альтернативные формы генов), контролирующие одинаковые проявления признака, то такое состояние называют гомозиготным, а если различные — гетерозиготным. В случае гомозиготности гены равнозначно влияют на возникновение какого-либо признака. В случае гетерозиготности один аллельный ген подавляет эффекты другого. Более «сильный» ген называют доминантным, а подавленный — рецессивным. Эффекты доминантных генов сравнительно легко обнаруживаются, а передачу самих генов нетрудно проследить в нескольких поколениях. В противоположность этому передачу потомству рецессивных генов выявить значительно труднее, особенно в малочисленных семьях.
Наряду с доминантным и рецессивным типом наследования встречается кодоминантное наследование, когда у гетерозиготного организма проявляются эффекты обоих аллелей. Кодоминантность часто встречается при синтезе антигенов крови. Кроме того, проявление таких признаков, как рост, вес, телосложение и др., обусловлено суммарным действием многих генов. Такие гены, образующие полигенную систему, в отдельности дают слабый эффект, но их суммарное действие оказывается достаточно сильным.
Под влиянием внешних факторов, например ионизирующей радиации, химических веществ, а также биохимических процессов, идущих в клетке, в наследственном веществе могут возникать различные изменения, например замена одного нуклеотида другим, которые в силу особенностей наследственного материала могут передаваться либо последующим поколениям соматических клеток, либо, возникая в гаметах, потомкам данного организма, т. е. возникают мутации (см. Изменчивость).
Совокупность всех локализованных в хромосомах генов составляет генотип, а совокупность всех наследственно обусловленных признаков организма — фенотип. Часто термин «генотип» используют применительно к одной или нескольким парам генов, а фенотипом соответственно называют контролируемые этими генами признаки.
Наследственность играет существенную роль в возникновении многих широко распространенных заболеваний: атеросклероза, гипертонической болезни, сахарного диабета и др. Знание механизмов реализации генетической информации и условий, влияющих на ее проявление, позволяет в настоящее время лечить и предупреждать ряд наследственных заболеваний человека.
См. также Генетика, Наследственные болезни.
Вышла в свет и находится в продаже книга:
Издательство «Советская Россия»
Азерников В. 3. Тайнопись жизни. 10 л,. т. 24200, цена 34 коп.
Каждое мгновение в нашем организме отмирают тысячи старых клеток и рождаются тысячи новых.
Между рождением и смертью клетка живет, синтезирует белки. Белков — сотни тысяч; строительных веществ, из которых создает их клетка, всего двадцать видов. Каким же образом ведет клетка уникальное строительство, как умудряется ничего не перепутать в своей ювелирной работе? На эти и многие другие вопросы ответит книга.
Совсем недавно ученые сделали важнейшее открытие. Оказалось, что жизнь клетки, ее работа заранее запрограммированы. Программа записана в виде специального химического шифра на молекулах дезоксирибонуклеиновой кислоты — ДНК, которые находятся в хромосомах клетки. Шифр построен чередованием четырех атомных кирпичиков, из которых состоит молекула ДНК.
Разгадка шифра наследственности открывает перед наукой грандиозные перспективы. Научившись «читать» этот шифр, можно попытаться менять его, менять наследственные предписания организма. Это поможет бороться со многими наследственными болезнями, с раковыми заболеваниями, откроет перспективы создания плодов необычайного веса и сахаристости, позволит успешнее предотвращать преждевременное старение организма.
Предварительные заказы на книгу принимаются в магазинах Книготорга и потребительской кооперации.
www.medical-enc.ru
Индивидуальная наследственность человека.
Основу индивидуальных различий следует искать в наследственности индивида и в условиях окружающей среды, в которых он развивается. Для начала рассмотрим то, что подразумевается под термином «наследственность». Понятие «наследственность» означает наследственность биологическую (а не «социальную» наследственность). Индивидуальная наследственность человека состоит из особых генов, которые он получает от родителей при зачатии. Чтобы оказать определённое влияние, фактор наследственности должен иметь особый ген или комбинацию генов. Гены группируются в хромосомы. Хромосомы соединены попарно. Два члена каждой пары сходны между собой по проявлению в функции. Число хромосом в каждой клетке в целом постоянно для каждого вида, но отличается у разных видов. Каждая человеческая клетка содержит 48 хромосом (24 пары). (В каждой клетке комара 6 хромосом – 3 пары.).
Каждый индивид начинает свою жизнь с одной клетки – это оплодотворённая яйцеклетка. Эта клетка делится на две дочерние клетки, каждая из которых снова делится и т.д. до тех пор, пока миллионы клеток не становятся зрелым организмом. Во время процесса клеточного деления, известного как митоз, каждая хромосома внутри клеточного ядра удваивается, разрываясь на две части, и каждая клетка, возникающая в результате такого деления, получает идентичный набор хромосом. Все клетки тела, таким образом, имеют одинаковую наследственность.
Когда индивид достигает половой зрелости, формируются специальные репродуктивные клетки (яйцеклетки и спермотозоиды). Этот процесс называется мейозом, или уменьшением, поскольку число хромосом в каждой репродуктивной клетке в два раза меньше изначального. Две хромосомы в каждой паре разделяются и расходятся по дочерним клеткам.
Наследственной основой индивидуальных различий является почти бесконечное разнообразие возможных генных комбинаций. Даже простые свойства человека зависят от совокупного влияния большого числа генов. Родительские клетки, принимающие участие в процессе зачатия содержат различные комбинации генов, возникшие в результате мейоза. Когда клетки материнского и отцовского организмов соединяются для создания нового организма, то тем самым они ещё больше увеличивают разнообразие возможных генных комбинаций. Из этого следует, что двое детей от одних родителей не могут иметь одинаковую наследственность. То же справедливо для разнояйцевых близнецов. Однояйцевые близнецы развиваются из разделившихся половинок единой оплодотворённой яйцеклетки и поэтому имеют один и тот же набор генов.
Простейшей иллюстрацией механизма наследственности могут служить единичные факторы, зависящие от одной пары генов, например альбиносность или отсутствие пигментации в глазах, волосах и на коже. Альбиносность от обоих родителей – альбинос (гомозиготный признак). От одного из родителей – нормальная пигментация, доминирующий признак (альбиносность – рецессивный – гетерозиготный). Гетерозиготные индивиды, хотя и выглядят как люди с нормальной пигментацией, несут в себе ген альбиносности и могут передать его своим потомкам.
Другие единичные признаки не проявляют доминирования, поэтому при скрещивании двух разных получится третий признак.
Пол индивида детерминируется парой хромосом: X и Y. Если ребёнок получает X –хромосомы от каждого родителя, то будет женского пола; если получает хромосомы X и Y, то мужского. От своей матери ребёнок может получить только X-хромосомы, а от отца – X или Y.
Существует мнение, что в каждом индивидууме есть все необходимые для обоих полов гены. Но наличие двух X-хромосом приводит к развитию женских половых признаков и подавлению мужских. Если же есть только одна X хромосома, то развитие получают мужские признаки. Признаки, сцепленные с полом: дальтониза, гемофилия, облысение.
Всякий раз, когда какое-либо свойство зависит от единичных признаков, которые определяются единственной генной парой, тогда в результате мы имеем качественно отличающиеся друг от друга, чётко идентифицируемые типы. Однако большинство свойств зависит от множественных факторов, при этом с ростом количества факторов число получающихся в результате комбинаций резко увеличивается. Например, человеческий рост – мультифакторный признак.
Кроме того, каждый признак в действительности является результатом взаимодействия всех генов, унаследованных индивидуумом. Ген всегда оказывает действие при наличии других генов – генный баланс.
Похожие статьи:
poznayka.org
Наследственность — это… Что такое Наследственность?
присущее всем организмам свойство обеспечивать в ряду поколений преемственность признаков и особенностей развития, т. е. морфологической, физиологической и биохимической организации живых существ и характера их индивидуального развития (онтогенеза). Явление Н. лежит в основе воспроизведения форм жизни по поколениям, что принципиально отличает живое от неживого. Знание законов Н. позволяет понять механизмы передачи наследственной информации от родителей детям, закономерности формирования наследственно обусловленных признаков и роль генов в сложных процессах жизнедеятельности организма (см. Ген). Разработка научно обоснованных методов уменьшения генетического груза наследственных аномалий должна способствовать сохранению наследственной природы человека.Различают хромосомную и внехромосомную Н. Хромосомная Н. связана с распределением носителей наследственности (генов) в хромосомах. Передача признаков потомству особенно четко прослеживается при наследовании менделирующих признаков, т.е. таких наследственных признаков, которые в потомстве, расщепляются по моногенному типу наследования в соответствии с законами Менделя — эмпирическими правилами наследования, устанавливающими численные соотношения, в которых отдельные признаки и их сочетания проявляются в гибридном потомстве при половом размножении.
Внехромосомная, или цитоплазматическая, Н. заключается в наследовании признаков, которые контролируются факторами, локализованными у животных организмов в митохондриях, у растений — в митохондриях и пластидах, у бактерий — в плазмидах (Плазмиды). Цитоплазматические элементы, обладающие свойством передачи наследственной информации, распределяются между дочерними клетками случайно, поэтому четкого менделевского расщепления в этих случаях не наблюдается. Все системы внехромосомной Н. взаимодействуют с хромосомными генами или их продуктами. Углубленное изучение Н. началось в 19 в., а значительный прогресс в этой области был достигнут лишь в 20 в. После открытия Менделем (G. Mendel) основных законов Н. стало несомненным, что она определяется материальными факторами, позже получивших название генов. Однако еще в 1750 г. Мопертюи (P. L.М. Maupertuis) и в 1814 г. Адаме (J. Adams) описали некоторые особенности наследования отдельных признаков у человека. В 1875 г. Гальтон (F. Galton) предложил близнецовый метод для разграничения роли Н. и среды в развитии признаков у человека. Он обосновал генеалогический метод анализа и разработал ряд статистических методов, из которых особенно ценен метод вычисления коэффициента корреляции. В становлении представлений о природе Н. большое значение имело создание Морганом (Th. Morgan) и его школой хромосомной теории наследственности (см. Генетика), было выявлено, что ген представляет собой материальную структуру в хромосомах (Хромосомы) ядра клетки. В первой половине 20 в. была показана дробимость гена, установлены явление эффекта положения гена, связь генетических элементов с ДНК и сделан ряд других важных открытий. После открытия в 1953 г. структурной и функциональной природы молекул ДНК как носителей генетической информации (см. Нуклеиновые кислоты) начался современный этап изучения проблемы Н. Важнейшим достижением этого этапа является установление всеобщности материальных основ Н. на базе молекул ДНК и РНК. Основной целостной единицей жизни служит клетка, имеющая ядро и цитоплазму, причем ядру принадлежит основная роль в обеспечении преемственности признаков и особенностей развития. Ядро содержит нитевидные структуры — хромосомы, представляющие собой образования, состоящие из ДНК и белка. Основной формой воспроизведения организмов является половой процесс, когда отдельная особь появляется из оплодотворенной яйцеклетки, или зиготы. Самовоспроизведение организмов, в основном растений, может осуществляться при помощи вегетативного размножения. В этом случае потомки возникают из частей родительской особи. При половом размножении происходит расщепление признаков потомства в зависимости от генотипов, вследствие чего, например, при скрещивании гибридных или высокогетерозиготных растений часто наблюдаются возврат к диким формам и потеря ценных сортовых признаков. При вегетативном размножении длительное время удается сохранять генетические свойства сортов. Установлено, что любая растительная клетка, не потерявшая в ходе своей дифференцировки ядра и цитоплазмы, может в культуре превратиться в каллусную, или зиготоподобную, клетку и дать начало новому организму. В экспериментальной биологии широкое распространение получил инбридинг — скрещивание близкородственных особей. Наследственная информация, заключенная в генах каждой особи (совокупность всех генов, присущих данной особи), носит название генотип, идиотип, или генетическая конституция, является итогом исторического развития данного вида и материальной основой будущей эволюции. Явление Н. рассматривается как сложная молекулярная внутриклеточная система, обеспечивающая хранение и реализацию информации, в соответствии с которой осуществляются жизнь клетки, развитие особи и ее жизнедеятельности. Реализация наследственной информации, записанной с помощью генетического кода — чередования нуклеотидов в ДНК зиготы, происходит в результате непрерывных взаимовлияний ядра и цитоплазмы, межклеточных взаимодействий и гормональной регуляции активности генов. В ходе развития генотип постоянно взаимодействует со средой. Совокупность всех свойств и признаков особи, сформировавшаяся в результате взаимодействия генотипа с окружающей средой, получила название фенотипа. Соответствие фенотипа особи генотипу материнского организма, обусловленное передачей материнских генов через овоплазму, называется материнским эффектом, или материнской наследственностью. Некоторые наследственные признаки, например цвет глаз или группа крови, не зависят от условий среды. В то же время на развитие некоторых количественных признаков, таких как рост и вес тела, факторы окружающей среды оказывают большое влияние. Проявление эффектов генов, обусловливающих, например, тучность, во многом зависит от питания, поэтому при помощи соответствующей диеты можно в определенной степени бороться с наследственно обусловленной полнотой. Материальные носители Н. содержат информацию не только о нормальных, но и о патологических признаках. Так, различного рода мутации — генетический груз, накапливаемый в генофонде человека, являются причиной возникновения большого числа наследственных аномалий, от которых страдают сотни миллионов людей нашей планеты (см. Наследственные болезни). Болезни с доминантным типом наследования или сцепленные с полом обнаруживаются сравнительно легко. Труднее установить значение Н. в развитии таких широко распространенных полигенных болезней с наследственным предрасположением, как гипертоническая болезнь, атеросклероз, язвенная болезнь, шизофрения, бронхиальная астма и др. Частота возникновения и тяжесть течения этих болезней зависят от конкретного сочетания факторов окружающей среды и наследственного предрасположения. См. также Генетика, Изменчивость, Медицинская генетика. Библиогр.: Бердышев К.Д. и Криворученко И.Ф. Генетика человека с основами медицинской генетики, Киев, 1979: Бочков Н.П. Генетика человека, М., 1978: Гершензон С.М. Основы современной генетики, Киев, 1983; библиогр.: Конюхов Б.В. и Пашин Ю.В. Наследственность человека, М., 1971; Ленц В. Медицинская генетика, М., 1984.свойство живой материи передавать потомству признаки и особенности развития родителей; обеспечивает преемственность морфологической, физиологической и биохимической организации живых существ в ряду поколений.
Насле́дственность внехромосо́мная — см. Наследственность цитоплазматическая.
Насле́дственность внея́дерная — см. Наследственность цитоплазматическая.
Насле́дственность неме́нделевская — см. Наследственность цитоплазматическая.
Насле́дственность цитоплазмати́ческая (син.: Н. внехромосомная, Н. внеядерная, Н. неменделевская, Н. экстрануклеарная, Н. экстрахромосомная) — Н., обусловленная факторами, локализующимися в цитоплазме.Насле́дственность экстрануклеа́рная (лат. extra- вне + nucleus ядро) — см. Наследственность цитоплазматичеческая.
Насле́дственность экстрахромосо́мная — см. Наследственность цитоплазматическая.
dic.academic.ru
Методы изучения наследственности человека
Генетика человека изучает явления наследственности и изменчивости в популяциях людей, особенности наследования признаков в норме и их изменения под действием условий окружающей среды.
Человек как объект генетического анализа. Изучение генетики человека связано с большими трудностями:
- Невозможность экспериментирования.
Одно из первых условий гибридологического анализа у человека невыполнимо, поскольку экспериментальные браки у человека невозможны. Люди вступают в брак не преследуя никаких «экспериментальных» целей.
- Сложный кариотип – много хромосом и групп сцепления.
23 пары хромосом затрудняет генетическое и цитологическое картирование, что в свою очередь уменьшает возможности генетического анализа.
- Длительность смены поколений.
Для смены одного поколения нужно в среднем 30 лет. Следовательно, генетик не может наблюдать более одного двух поколений.
- Малое количество потомков.
Размер семьи в настоящее время настолько мал, что не позволяет вести анализ расщепления признаков в потомстве в пределах одной семьи.
- Невозможность создания одинаковых условий жизни.
Для человека понятие «среда» имеет более широкий характер, чем для животных и растений. Помимо таких факторов, как физические упражнения, питание, жилищные условия, климат, средой человека являются условия его социальной жизни, и она не поддается изменению по желанию генетика.
Основные методы исследования генетики человека
- I. Клинико-генеалогический метод
Генеалогия в широком смысле слова родословная – генеалогический метод – метод родословных. Он был введен конце XIX века Ф.Гальтоном и основан на построении родословных и прослеживание болезни (или признака) в семье или роду с указанием типа родственных связей между членами родословной. В настоящее время является наиболее универсальным и широко применяется при решении теоретических и прикладных проблем.
Метод позволяет установить
1) является ли данный признак наследственным
2) тип наследования и пенетрантность гена
3) предположить генотип лиц родословной
4) определить вероятность рождения ребенка с изучаемым заболеванием
5) интенсивность мутационного процесса
6) используется для составления генетических карт хромосом
Таким образом, цель генеалогического метода сводится к выяснению родственных связей и к прослеживанию признака или болезни среди близких и дальних, прямых и непрямых родственников. Технически он складывается из следующих этапов.
Этапы генеалогического анализа:
1) сбор данных о всех родственниках обследуемого (анамнез)
2) построение родословной
3) анализ родословной и выводы
Сложность сбора анамнеза заключается в том, что пробанд должен хорошо знать большинство своих родственников и состояние их здоровья. Пробанд – человек, обратившийся в медико-генетическую консультацию, в отношении которого строится родословная, и от которого получены сведения в отношении этой же болезни у родственников. Сибсы – братья и сестры пробанда.
Типы наследования:
1. Аутосомно-доминантный
1. больные в каждом поколении
2. больной ребенок у больных родителей
3. болеют в равной степени мужчины и женщины
4. наследование идет по вертикали и по горизонтали
5. вероятность наследования 100%, 75% и 50%.
Данные признаки будут проявляться только при полном доминировании, так наследуются у человека полидактилия, веснушки, курчавые волосы, карий цвет глаз и др. При неполном доминировании будет проявляться промежуточная форма наследования. При неполной пенетрантности гена, больные могут быть не в каждом поколении.
2. Аутосомно-рецессивный
- больные не в каждом поколении
- у здоровых родителей больной ребенок
- болеют в равной степени мужчины и женщины
- наследование идет преимущественно по горизонтали
- вероятность наследования 25, 50 и 100%
Чаще всего вероятность наследования болезни данного типа составляет 25%, так как вследствие тяжести заболевания больные либо не доживают до детородного возраста, либо не вступают в брак. Так наследуются фенилкетонурия, серповидно-клеточная анемия, голубой цвет глаз и т.д.
3. Х-сцепленный рецессивный тип наследования
- больные не в каждом поколении
- у здоровых родителей больной ребенок
- болеют преимущественно мужчины
- наследование идет в основном по горизонтали
- вероятность наследования 25% от всех детей и 50% у мальчиков
Примеры: гемофилия, дальтонизм, наследственная анемия, мышечная дистрофия и др.
4. Х-сцепленный с полом доминантный тип наследования сходен с аутосомно-доминантным, за исключением того, что мужчина передает этот признак всем дочерям
Пример: рахита, устойчивый к лечению витамином D, гипоплазия эмали зубов, фолликулярный гиперкератоз.
5. Голандрический
- больные во всех поколениях
- болеют только мужчины
- у больного отца больны все его сыновья
- вероятность наследования 100% у мальчиков.
Примеры: гипертрихоз ушной раковины, перепонки между вторым и третьим пальцами на ногах; ген, определяющий развитие семенников. Голандрические признаки не имеют существенного значения в наследственной патологии человека.
II. Цитогенетический метод
В настоящее время цитогенетический метод в генетике занимает существенное место. Применение данного метода позволяет изучить морфологическое строение отдельных хромосом и кариотипа в целом, определить генетический пол организма, а также диагностировать различные хромосомные болезни, связанные с нарушением числа хромосом или нарушением их структуры. Метод используется для изучения мутационного процесса и составления генетических карт хромосом. Наиболее часто метод используется в пренатальной диагностике хромосомных болезней.
Цитогенетический метод основан на микроскопическом изучении кариотипа и включает следующие этапы:
— культивирование клеток человека (чаще лимфоциты) на искусственных питательных средах
— стимуляция митозов фитогемагглютинином (ФГА)
— добавление колхицина (разрушает нити веретена деления) для остановки митоза на стадии метафазы
— обработка клеток гипотоническим раствором, вследствие чего хромосомы рассыпаются и лежат свободно
— окрашивание хромосом
— изучение под микроскопом (компьютерные программы).
Цитологические карты хромосом —
Генетические карты хромосом, т.е схемы описывающие порядок расположения генов и других генетических элементов в хромосоме с указанием расстояния между ними. Генетическое расстояние определяется по частоте рекомбинации между гомологичными хромосомами (расстояние между генами прямо пропорционально частоте кроссинговера) и выражается в сантиморганидах (сМ). Одна сантиморганида соответствует частоте рекомбинации, равной 1%………….. Такие генетические карты помимо инвентаризации генов отвечают на вопрос о вовлеченности генов в образование отдельных признаков организма.
Метод позволяет выявлять геномные (например, болезнь Дауна) и хромосомные (синдром кошачьего крика) мутации. Хромосомные аберрации обозначают номером хромосомы, короткого или длинного плеча и избытком (+) или нехваткой (-) генетического материала.
- III. Близнецовый метод
Метод заключается в изучении закономерностей наследования признаков в парах монозиготных и дизиготных близнецов. Он позволяет определить соотносительную роль наследственности (генотипа) и среды в проявлении различных признаков, как нормальных, так и патологических. Позволяет выявить наследственный характер признака, определить пенетрантность аллеля, оценить эффективность действия на организм некоторых внешних факторов (лекарственных препаратов, обучения, воспитания).
Суть метода заключается в сравнении проявления признака в разных группах близнецов при учете сходства или различия их генотипов
Различают моно- и дизиготных близнецов .
Монозиготные близнецы развиваются из одной оплодотворенной яйцеклетки. Они имеют совершенно одинаковый генотип, т.к. имеют 100% общих генов. И если они отличаются по фенотипу, то это обусловлено воздействием факторов внешней среды.
Дизиготные близнецы развиваются после оплодотворения сперматозоидами нескольких одновременно созревших яйцеклеток. Близнецы будут иметь разный генотип и их фенотипические различия будут обусловлены как генотипом, так и факторами внешней среды.
Процент сходства группы близнецов по изучаемому признаку называется конкордантностью, а процент различия дискордантностью. Так как монозиготные близнецы имеют одинаковый генотип, признак развивается у обоих близнецов, то конкордантность их выше, чем у дизиготных. Сравнение монозиготных близнецов, воспитывающихся в разных условиях, позволяет выявить признаки, в формировании которых существенная роль принадлежит факторам среды, по эти признакам между близнецами наблюдается дискордантность, т.е. различия.
Для оценки ли наследственности и среды в развитии того или иного признака используют формулу Хольцингера:
СМЗ — С ДЗ
Н = ——————— х 100 Е = 100 — Н
100 — СДЗ
Н – роль наследственности, Е – роль среды
По мере разработки теоретических основ близнецового метода постепенно сформировался особый раздел этих исследований – метод контроля по партнеру. Позволяет оценить лечебный эффект новых фармакологических средств при разных способах введения, исследовать фазы их действия, показать различия фармакокинетики новых и старых препаратов). Метод используется для предрасположенности к различным заболеваниям: ИБС, язвенная болезнь, ревматизм, инфекционные болезни, опухолей.
IV. Популяционно-статистический метод
С его помощью изучают наследственные признаки в больших группах населения, в одном или нескольких поколениях Он позволяет определять частоту встречаемости в популяции различных аллелей гена и разных генотипов по этим аллелям, выяснить распространение в ней различных наследственных признаков, в том числе заболеваний. Он позволяет изучать мутационный процесс, роль наследственности и среды в возникновении болезней, особенно с наследственной предрасположенностью. Существенным моментом использования этого метода является статистическая обработка полученных данных на основе закона генетического равновесия Харди – Вайнберга.
Математическим выражением закона служит формула (рА+qа)2 где р и q частоты встречаемости аллелей А и а соответствующего гена. Раскрытие этой формулы дает возможность рассчитать частоту встречаемости людей с разным генотипом и в первую очередь гетерозигот – носителей скрытого рецессивного аллеля: р2АА + 2рq + q2аа.
Однако перед тем как говорить о практическом применении этих формул, следует отметить условия возникновения равновесия генотипов в популяциях:
1) Наличие панмиксии, т.е. случайный подбор супружеских пар
2) Отсутствие притока аллелей, вызываемого мутационным давлением
3) Отсутствие оттока аллелей, вызываемого отбором.
4) Равная плодовитость гетерозигот и гомозигот
5) Поколения не должны перекрываться во времени
6) Численность популяции должна быть достаточно большой.
Известные генетики отмечают, что хотя ни в одной конкретной популяции эта совокупность условий не может быть соблюдена, в большинстве случаев расчеты по закону Харди –Вайнберга настолько близки к действительности, что этот закон оказывается вполне пригодным для анализа генетической структуры популяций.
Пример……..
Например, гомозиготы по гену НbS в Беларуссии практически не встречаются, а в странах Западной Африки частота их варьирует от 25% в Камеруне до 40% в Танзании. Изучение распространения генов среди населения различных географических зон (геногеография) дает возможность установить центры происхождения различных этнических групп и их миграции, определить степень риска появления наследственных болезней у отдельных индивидуумов.
V. Метод дерматоглифики и пальмоскопии (дактилоскопии)
В 1892 г. был предложен Гальтонов в качестве одного из методов исследования генетики человека – Это метод изучения кожных гребешковых узоров пальцев и ладоней, а также сгибательных ладонных борозд. Указанные узоры являются индивидуальной характеристикой человека и не изменяются в течение его жизни, восстанавливаются после повреждений (ожогов).
Пример (Гальтон, Джоконда )
Сейчас установлено, что признак наследуется по полигенному типу и большое влияние на характер пальцевого и ладонного узоров оказывает мать через механизм цитоплазматической наследственности.
Метод нашел широкое применение в криминалистике, идентификации зиготности близнецов, установлении отцовства. Характерные изменения данных узоров наблюдаются при некоторых хромосомных болезнях ( с-м Дауна, Клайнфельтера, Шер.-Тернера).
VI. Биохимические методы
Позволяет изучать наследственные заболевания, обусловленные генными мутациями – причины болезней обмена веществ (фенилкетонурия, серповидно-клеточная анемия). С помощью этого метода описано более 1000 врожденных болезней обмена веществ, для многих из них выявлен дефект первичного генного продукта. Наиболее распространенными среди этих заболеваний являются болезни связанные с дефектностью ферментов, структурных, транспортных или иных белков.
Метод основан на изучении активности ферментных систем: либо по активности самого фермента, либо по количеству конечных продуктов реакции, катализируемой данным ферментом.
Дефекты ферментов определяют путем определения содержания в крови и моче продуктов метаболизма, являющихся результатом функционирования данного белка. Дефицит конечного продукта, сопровождающийся накоплением промежуточных и побочных продуктов нарушенного метаболизма, свидетельствует о дефекте фермента или его дефиците в организме.
С помощью биохимических нагрузочных тестов можно выявлять гетерозиготных носителей патологических генов, например, фенилкетонурии. Обследуемому человеку вводят внутривенно определенное количество аминокислоты фенилаланина и через равные промежутки времени определяют его концентрацию в крови. Если человек гомозиготен по доминантному гену (АА), то концентрация фенилаланина в крови довольно быстро возвращается к контрольному уровню, а если он гетерозиготен (Аа), то снижение концентрации фенилаланина идет вдвое медленнее.
Аналогично проводятся тесты, выявляющие предрасположенность к сахарному диабету, гипертонии и другим болезням.
VII. Методы рекомбинантной ДНК
Позволяют анализировать фрагменты ДНК, находить и изолировать отдельные гены и сегменты генов и устанавливать в них последовательность нуклеотидов. К данному методу относиться метод клонирования ДНК. Термин «клонирование» означает, что ген клонирован, специальными приемами выделен, изучена его структура, клонирование гена означает также, что известен белок, синтез которого контролируется соответствующим геном. На основе клонированных генов создаются «геномные библиотеки» и международные банки данных, Любой специалист в мире может практически беспрепятственно войти в эти банки данных и воспользоваться для исследовательских целей собранной там информацией. Данные геномных библиотек широко используются при реализации программы «геном человека». (Коллекция фрагментов ДНК из всего генома)
Благодаря достигнутым успехам в рамках этой программы появилась возможность реально оценить функции генов в организме человека. Хотя более чем для четверти генов информация пока недоступна, для двух третей генов она или полностью установлена, или может быть примерно указана. Также была получена исключительно интересная информация о вовлеченности генов в образование и функционирование отдельных органов и тканей человеческого тела. Оказалось, что самое большое число генов необходимо для формирования мозга и поддержания его активности, а самое маленькое для создания эритроцитов — всего 8 генов. Эти сведения помогут разобраться в генетических программах развития и функционирования организма человека, в причинах возникновения раковых заболеваний и старения. Выявление молекулярных основ заболеваний поможет перевести на новый уровень методы их ранней диагностики, а значит, вести более утонченно и успешно борьбу с заболеваниями. Такие методы, как, например, адресная доставка лекарств к пораженным клетки, замещение больных генов здоровыми, и многие другие становятся частью арсенала современной медицины.
VIII. Методы генетики соматических клеток
С помощью этих методов изучают наследственность и изменчивость соматических клеток, что в значительной мере компенсирует невозможность применения к человеку гибридологического метода.
Культуры соматических клеток человека получают из материала биопсий (периферическая кровь, кожа, опухолевая ткань, ткань эмбриона, клетки из околоплодной жидкости).
В генетике человека используют следующие четыре метода.
1. Простое культивирование – клетки пригодны для цитогенетических, биохимических, иммунологических и др. исследований.
2. Клонирование – получение потомков одной клетки. Дает возможность проводить в генетически идентичных клетках биохимический анализ наследственно обусловленных процессов.
3. Селекция соматических клеток с помощью искусственных сред используется для отбора мутантных клеток с некоторыми свойствами, отбор гибридных клеток. Метод широко используется для изучения генных мутаций ( механизмы, спонтанная и индуцируемая частота).
4. Гибридизация соматических клеток основана на слиянии совместно культивируемых клеток разных типов. При введении в культуру клеток РНК-сод. Вируса Сендай инактивированного при облучении ультрафиолетом – частота гибридизации значительно повышается. Гетерокарионы -2 ядра разных клеток в одной цитоплазме. После митоза образуются две одноядерные клетки – синкарионы – настоящая гибридная клетка, содержащая хромосомы обеих исходных клеток. В дальнейшем происходит постепенное удаление хромосом того организма, клетки которого имеют более медленный темп размножения.
Утрата хромосом носит случайный характер и поэтому среди большого числа гибридов всегда можно найти клетку, сохранившую какую-нибудь одну хромосому человека.
Используя подходящую селективную систему, можно отобрать клетки с определенной ферментативной активностью и локализовать ген этого фермента на конкретной хромосоме.
Метод используется для изучения проблемы сцепления и локализации генов.
Можно изучать механизмы первичного действия и взаимодействия генов, регуляцию генной активности. Метод позволяет широко изучать патогенез наследственных болезней на биохимическом и клеточном уровне.
IX. Создание моделей наследственных болезней человека с помощью трансгенных
животных.
Биологическое моделирование наследственных болезней представляет собой большой раздел экспериментальных биологии и генетики. Принцип биологического моделирования генных мутаций основан на законе гомологичных рядов в наследственной изменчивости, открытом Н.И.Вавиловым. У животных встречаются мутации, вызывающие такой же патологический эффект, как и у человека (мыши, кролики, собаки, хомяки, мыши). Среди наследственных аномалий у животных встречаются такие заболевания как, гемофилия, ахондроплазия, мышечная дистрофия, сахарный диабет и многие другие, составляющие основу наследственной патологии человека.
Методы основаны на введении чужеродных генов в клетки зародышей.
Как и всякая модель мутантные линии трансгенных животных не могут полностью воспроизвести наследственное заболевание, поэтому моделируются какие-то определенные фрагменты с целью изучения первичного механизма действия генов, патогенеза заболевания разработки принципов его лечения.
dendrit.ru