Работа над ошибками математика 2 класс памятка: Работа над ошибками | Материал по математике (2 класс) на тему:

Содержание

Работа над ошибками | Материал по математике (2 класс) на тему:

Опубликовано 08.01.2013 — 16:25 — Смирнова Ирина Васильевна

Памятка по работе над ошибками по математике 2 класс

Скачать:


Предварительный просмотр:

Работа над ошибками.

  1. 1. Допущены вычислительные ошибки в выражениях с одним действием. 
  2. Выписать выражение. Выполнить вычисление и записать верный результат. Записать и решить 2 выражения с аналогичным действием (сложение, вычитание, умножение, деление)
  3. 2. Допущены вычислительные ошибки в выражениях с несколькими действиями. 
  4. Выписать выражение. Выполнить вычисление и записать верный результат. Записать и решить 2 выражения с аналогичным действием (сложение, вычитание, умножение, деление)
  1. 3. Допущены ошибки при решении задач:

         — В ходе решения или составления краткой записи. Составить схему верно и записать решение задачи. Составить и решить обратную задачу.

         —  Вычислительные ошибки. Надо выполнить вычисления правильно и написать результат.

  1. 4. Допущена ошибка на определение правила составления числовых рядов или выражений. 
  2. Надо, разгадав  правило, записать числовые ряды или выражения правильно.
  1. 5. Допущена ошибка на геометрический материал. 
  2. Надо выполнить заданный чертеж снова правильно.
  3. 6. Ошибка при решении уравнения.
  1. Выписать уравнение, выполнить вычисления, записать верный результат и выполнить проверку. Записать и решить 2 уравнения с аналогичным действием (сложение, вычитание, умножение, деление)

Как надо исправлять ошибки, которые нашел сам ученик:

Простым карандашом аккуратно один раз зачеркнуть неправильный результат и ручкой рядом написать правильное значение. Исправления ручкой по написанному не допускаются. 


По теме: методические разработки, презентации и конспекты

Групповая работа на уроке русского языка.
Тема: Работа над ошибками.

Цель: провести анализ контрольных работ (тестов), учить находить ошибки в своих работах, провести работу над ошибками, формировать УУД. Подготовительная работа:На предыдущем уроке дети напи…

Работа над ошибками (из опыта работы учителей начальных классов)

Памятка для работы над ошибками по русскому языку в начальной школе….

Работа над ошибками в контрольной работе по математике.

Работа над ошибками после изучения темы «Сложение и вычитание чисел в пределах 20». На данном уроке проводится анализ заданий, в которых учащиеся чаще всего допускают ошибки….

«Роль разнообразия приёмов работы над ошибками по русскому языку в повышении самостоятельности учащихся в этом виде работы».

Статья «Роль разнообразия приёмов работы над ошибками по русскому языку в повышении самостоятельности учащихся в этом виде работы&quot…

Приемы работы над ошибками ( из опыта работы)

В данной статье представлены приёмы работы над ошибками по русскому языку в начальной школе.

Работа над ошибками в комплексной работе 3 класс.Осень в лесу.(И.Соколов –Микитов )

Эту презентацию можно  использовать после того , как ребята выполнят комплексную работу в 3 классе (Абросимова Е.Е.,Мурашкина И.А) по тексту » Осень в лесу.»(И.Соколов-Микитов).  Иллюстрации…

Памятка»Как работать над ошибками». Работай над ошибками регулярно!

Памятка «Как работать над ошибками в начальной школе» предназначена для учеников, родителей и учителей.В данном пособии представлены  основные разделы программы школьного курса по русск…


Поделиться:

 

Памятка работы над ошибками по математике 2 класс УМК «Школа России»

Оформление работы над ошибками по математике во 2-4 классе

  • Пропускаю 4 клеточки после работы.

  • На 5 клеточке пишу посередине с большой буквы:

Работа над ошибками

  • Начинаю с ошибок в оформлении задачи, используя памятку.

  • Далее нахожу ошибки, допущенные в работе и выполняю задания, следуя инструкциям в памятке.

Памятка работы над ошибками по математике

  1. Сложение и вычитание в пределах 10:

— запиши пример верно

— повтори таблицу сложения и вычитания в пределах 10
— реши пример по образцу

Образец: 

3 + 5 = 8       10 – 4 = 6 

5 + 3 = 8      10 – 6 = 4 

8 – 5 = 3      4 + 6 = 10

8 – 3 = 5      6 + 4 = 10

  1. Сложение и вычитание в пределах 20:
    — запиши пример верно
    — повтори таблицу сложения и вычитания в пределах 20
    — реши пример по образцу

Образец: 

8 + 7 = 8 + (2 + 5) = (8 + 2) + 5 = 10 + 5 = 15

16 – 9 = 16 – (6 + 3) = (16 – 6) – 3 = 10 – 3 = 7

  1. Ошибки в задаче:

а) в краткой записи:

— снова прочитай задачу, выполни краткую запись верно.

б) в решении:

— прочитай задачу и представь себе, о чём говорится в задаче;
 запиши задачу кратко, можно выполнить рисунок или чертеж;
 поясни, что показывает каждое число, повтори вопрос задачи;

— подумай, можно ли сразу ответить на вопрос задачи. Если нет, то почему?

— что нужно узнать сначала, что потом?

— составь план решения;

-реши по действиям с пояснениями;
— проверь решение;

— запиши ответ задачи.

4. Ошибки в задаче с отрезками:

— внимательно прочитай задание и снова выполни решение

Образец:

5 + 3 = 8 (см)

Ответ: 8 см равен второй отрезок.

5. Ошибки в сравнении числовых выражений:

— выпиши выражения

-посчитай результат решения

-запиши и поставь знак сравнения

Образец:

5 + 10 › 12 – 9

15 › 3

удь внимателен! Не во всех выражениях нужно доказывать своё решение, например: 5 + 3 = 3 + 5)

6. Ошибки в сравнении именованных чисел:

— выпиши выражения

-докажи своё решение

-запиши и поставь знак сравнения

Образец: 2 дм 5 см ‹ 29 см

  1. м ‹ 29 см

7. Таблица умножения и деления:

а) повтори таблицу умножения;

б) запиши пример и реши его верно;

в) запиши все случаи умножения и деления с этими числами;

г) придумай различные примеры на умножение и деление с данным ответом:

14 : 7= 2

14 : 2= 7

2 · 7= 14

7 · 2= 14

18 : 9= 2

18 : 2= 9

2 · 9= 18

  1. · 2= 18

8. Ошибки в ходе решения уравнения:

а) запиши уравнение;

б) назови компоненты;

в) вспомни правило нахождения неизвестного компонента;

г) реши уравнение верно;

д) придумай и реши похожее уравнение.

Советы по выставлению оценок за тест по математике: выделение ошибок

Выделение ошибок: стенограмма стратегии выставления оценок

Лия: Я Лия Алкала. Я преподаю математику в седьмом и восьмом классах.

Сегодня вы увидите, как я начал оценивать тесты.

«Хорошо, ребята, прямо сейчас мы собираемся получить результаты пятничных тестов.»

Я больше не ставлю оценки за тесты, и все мои отзывы представлены в виде выделенных ошибок.

«Когда пересдача этого теста?»

Динамик 2: Пятница после школы.

Лия: «Пятница после школы. Как ты узнаешь свою оценку?»

Динамик 3: Школа Силы.

Лия: «Завтра ты отправляешься в Школу Силы. Завтра она будет опубликована. Вот так.»

Для меня я действительно хочу, чтобы каждое общение с ребенком было моментом обучения. Когда я сдавал тесты по-старому, я обнаружил, что дети смотрят на свою оценку, решают, хороши они в математике или нет, откладывают тест и никогда больше не смотрят на него. .

«Я хочу, чтобы вы посмотрели на это следующее.»

Не ставя оценку за контрольную, я чувствую, что позволяю им сначала бороться с математикой, которую они подготовили для меня, а уже потом думать об оценке. Когда я впервые сделал это, вопрос номер один, который я получал каждый раз, когда сдавал тест, был: «Какая у меня оценка за это? Сколько баллов стоит эта задача?» И мне приходилось много говорить: «Помните, ваша оценка в седьмом классе не так важна, как то, сколько вы изучаете математику». Так что для них потребовалось много переосмысления, и на данный момент очень немногие дети будут спрашивать меня о своей оценке, и большинство вопросов, которые я получаю, касаются математики.

«Я хочу показать вам, прежде чем мы вернем ваши тесты, некоторые из моих любимых ошибок, которые возникали пару раз. Они могут быть из любого из моих классов. -4 умножить на 2x минус 3 равно 28. Я подчеркнул, что 2x равно 7 . Расскажите своей группе, что с этим не так».

Я подчеркиваю их ошибку, но не упоминаю конкретно, в чем именно заключается эта ошибка.

Говорящий 4: Если 2x равно 7, то не будет ли это 7 минус 3, что равно 4.

Лия: Угу.

Говорящий 4: Но тогда -4 умножить на 4 равно -16.

Лия: Нет —

Спикер 4:28.

Лия: — красивая.

Таким образом, частью работы в классе становится получение теста, чтобы выяснить, почему они допустили ошибку на этом конкретном этапе. Итак, я вижу, что теперь, когда я сдаю тесты, они продолжают учиться.

Почему я выделил этот X? Падма?

Говорящий 5: Потому что, если X равно 3, а дроби равны 1.

Лия: Так что же они должны были написать вместо этого? Поговорите со своей группой.

Говорящий 6: Должно быть, 9 на 3.

Говорящий 7: Они забыли, что скрывали.

Говорящий 8: Они должны были написать X над 3 равно 30.

Лия: Верно. Итак, я собираюсь раздать ваши тесты. Ребята, посмотрите на свои ошибки и посмотрите, понимаете ли вы их. Если вы их не понимаете, вы можете поговорить со своим соседом или со мной.

Говорящий 9: Как я получил -4? Как я понял это неправильно?

Динамик 10: Что ты положил? Что было Х?

Динамик 11: Подождите, я думаю. Я думаю.

Лия: Когда вы складываете отрицательные дроби, вы должны делать это так или иначе.

Динамик 12: -3 умножить на 5 равно -15. Ах.

Лия: То есть вы действительно не можете посмотреть на количество бликов и определить свою оценку. Это гораздо более сложный процесс понимания нюансов, какие типы ошибок делает этот ребенок и насколько важны эти ошибки с точки зрения изучения математики.

Что здесь произошло?

Говорящий 13: Я только что сделал это как отрицательный.

Лия: Да, ты просто не закончил. Я почти поставил это. Мне очень нравится этот.

Я оцениваю тест в двух раундах. Сначала я читаю сверху вниз весь тест и ищу момент, когда будет допущена ошибка. Поэтому для меня очень важно выделить только ошибку, а затем объяснить им, что ответ, который они получили, был на самом деле неправильным ответом, но они ошиблись не на этом этапе задачи. Поэтому я называю это «поток через кредит».

Вот два хороших примера «потока через кредит». Вот один из них, где они допустили ошибку в начале задачи, но затем не сделали никакой другой ошибки. Таким образом, их ошибка прекрасно протекала через проблему. Они только потеряли баллы за это. В этой задаче они допустили ошибку, и тогда, даже если бы я предположил, что вся эта строка верна, они ошиблись, основываясь на этом, поэтому они потеряли бы баллы за обе строки этой задачи.

Другое преимущество в том, что я могу выделить то, за что даже не стал бы снимать баллы. Так, например, на сегодняшнем тесте я выделил, если они не написали, что это было количество угощений, которые испекла Люси, но на самом деле я не снял баллы за это, потому что они будут в порядке в будущем. Но я хотел привлечь их внимание к этому.

Лия: После того, как я все это сделала, я смотрю на все тесты во второй раз, и теперь я смотрю на тест в целом и говорю, какие ошибки делает этот ребенок? Есть ли распространенные ошибки, которые повторяются снова и снова, или существует множество ошибок разных типов?

Как насчет этого?

Говорящий 14: Я думал, что это сложение, а не вычитание.

Лия: Хорошо, там похожие ошибки. Это действительно хорошо.

Если у них в голове есть что-то, что работает, и они повторяют эту ошибку снова и снова, я не собираюсь снимать за это балл с каждой задачи.

Мне легко исправить эту ошибку, потому что нам нужен только один разговор, а не то, что они будут делать случайные вещи повсюду. В обоих этих тестах может быть много ярких моментов, но у одного определенно будет гораздо более высокая оценка, чем у другого.

Почему это неправильно?

Говорящий 15: Потому что -15x плюс 2x равно -13x.

Лия: Красиво. Вы можете исправить это оттуда?

Один из советов заключается в том, что таким образом оценка тестов не занимает больше времени. Думаю, это был большой страх. Это такое же количество времени, и это гораздо более приятно.

Я почувствовал себя счастливым.

Я надеюсь, что с помощью этой стратегии они увидят, что изучение своих ошибок и обучение на своих ошибках и есть обучение.

Что здесь произошло?

Говорящий 16: Должно было быть плюс -5.

Лия: Плюс -5. Все остальное было прекрасно, включая ваш отрицательный знак. Почему это неправильно?

Я разрешаю им пересдавать тест, когда они захотят, и я дам им новую версию теста. Часто детям нужно еще немного посидеть со мной, прежде чем они будут готовы к пересдаче. Так что они придут ко мне за обедом или во время консультации, и мы обсудим это.

Говорящий 17: Я правда не понял.

Лия: О, ты знаешь, что теперь делать?

Говорящий 17: Ага. Распределительное свойство.

Лия: Да, почему бы тебе не сделать это прямо сейчас. Этот меня удивил.

Говорящий 17: Я сделал это неправильно.

Лия: Итак, нормализовать процесс совершения ошибок — моя цель для этих детей. Это позволяет им больше рисковать.

Показать меньше

Сила ошибок и борьбы – PBLife

Глава 2 в Boaler, Jo. Математическое мышление: раскрытие потенциала учащихся с помощью творческой математики, вдохновляющего сообщения и инновационного обучения. Печать.

 

 

 

Ошибки и мозг:

  • Ошибки выросли синапсы.
  • Ошибки вызывают большую активность мозга, чем правильные ответы.
  • 2 реакции мозга на ошибки:
    1. ERN ответы — повышенная электрическая активность из-за конфликта между правильным ответом и ошибкой
    2. Pe ответы — сигнал мозга из-за распознавания ошибки
  • Мозговые искры могут возникать, даже если люди не подозревают, что были допущены ошибки
  • Люди с установкой на рост проявляют большую активность мозга в ответ на ошибки и с большей вероятностью распознают ошибки

Ошибки и жизнь

  • Более успешные люди совершают больше ошибок, чем менее успешные
  • Делать ошибки — ключ к творческому и предпринимательскому мышлению
  • Успешные люди склонны:
    • чувствовать себя комфортно, ошибаясь
    • попробовать дикие идеи
    • открыты для разного опыта
    • играть с идеями, не оценивая их
    • преодолевать трудности
    • готовы пойти против традиции
  • Практика описанных выше установок может помочь людям выучить математику (или, возможно, что угодно)

Как мы можем изменить отношение учащихся к ошибкам?

  • Расскажите учащимся о положительном влиянии ошибок на мозг
  • Сомните бумагу с ошибками, бросьте ее во что-нибудь, чтобы выпустить разочарование. Затем откройте его, разгладьте и обведите линии сгиба маркером, чтобы напомнить себе о росте мозга в результате ошибки. Затем сохраните бумагу для записи ошибок.
  • Обучайте и показывайте позитивные сообщения мозга.
  • Попросите учителей и учащихся выбрать и выделить «любимые ошибки».
  • Обсудите в классе ошибки.
  • Не снижать рейтинг заданий из-за ошибок — повышать рейтинг заданий из-за ошибок.
  • Избегайте чрезмерного тестирования и завышения оценок.
  • Проявляйте позитивное отношение к ошибкам в групповых и индивидуальных условиях.
  • Неоднократно напоминайте учащимся о росте мозга, сопровождающемся ошибками, и отсутствии развития мозга, сопровождающемся правильными ответами
  • Научите учащихся ценить и осознавать неравновесие (Пиаже) – состояние неравновесия возникает, когда учащиеся пытаются включить новую информацию в существующие мысленные карты – состояния неравновесия неудобны, но ведут к мудрости
  • Предложите учащимся математический опыт, создающий неравновесие
  • Цените работу с ошибками больше, чем правильную работу
  • Сделайте показ ошибок обычным явлением в классе и обсудите, как обдумать ошибку

Знание о влиянии ошибок на мозг может научить учащихся и учителей больше ценить ошибки и лучше использовать их для роста. Знание стратегий создания культуры, которая ценит ошибки, поможет учащимся развить мышление роста и поможет им творчески и конструктивно подходить к ошибкам.

 

Этапы подготовки

  • Изучите стратегии создания в классе культуры, которая ценит ошибки. См. выше.
  • Разработайте упражнения и стратегии, которые будут использоваться для обучения и напоминания учащимся о ценности ошибок.

Ранние этапы реализации

  • Внедрение политик, стратегий и уроков, учитывающих ошибки учащихся, такие как:
    • Представление (учителям и учащимся) ошибок и обсуждение их в классе
    • Стратегия мятой бумаги (см. выше)
    • Создание ситуаций, которые выведут учащихся из равновесия и направят учащихся к целям обучения
    • Обучение учащихся взаимосвязи между активностью мозга и ошибками
    • Выбор любимых ошибок и почему они так полезны
    • Размышления о том, как новое отношение к ошибкам влияет на обучение
    • Использование политик оценивания, которые оценивают ошибки

Расширенные этапы реализации

  • Создать банк задач, создающих неравновесие, которые исследуют большие идеи в математике
  • Создать банк обсуждений и подсказок с вопросами, которые выделяют и анализируют ошибки

 

  • Статьи о навыках XXI века
  • Агентские статьи
  • Предметы культуры
Категории: Навыки 21st Century, Агентство, Математика Теги: 21stCenturySkills, Агентство, Культура, Математика Ищи:

Последние сообщения

  • Встреча в середине 3 сентября 2018 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *