Теория хаоса — Психологос
Введение в теорию хаоса
Что такое теория хаоса?
Фракталы создаются благодаря игре хаоса.
Теория хаоса это учение о постоянно изменяющихся сложных системах, основанное на математических концепциях, в форме ли рекурсивного процесса или набора дифференциальных уравнений, моделирующих физическую систему (реку́рсия — процесс повторения элементов самоподобным образом).
Неправильные представления о теории хаоса
Широкая общественность обратила внимание на теорию хаоса благодаря таким фильмам, как «Парк юрского периода», и благодаря им же, постоянно увеличивается опасение теории хаоса со стороны общества. Однако, как и в отношении любой вещи, освещаемой средствами массовой информации, в отношении теории хаоса возникло много неправильных представлений.
Фильм «Теория хаоса и антихаоса»
Наиболее часто встречающееся несоответствие состоит в том, что люди полагают, что теория хаоса — это теория о беспорядке. Ничто не могло бы быть так далеко от истины! Это не опровержение детерминизма и не утверждение о том, что упорядоченные системы невозможны; это не отрицание экспериментальных подтверждений и не заявление о бесполезности сложных систем. Хаос в теории хаоса и есть порядок — и даже не просто порядок, а сущность порядка.
Это правда, что теория хаоса утверждает, что небольшие изменения могут породить огромные последствия. Но одной из центральных концепций в теории является невозможность точного предсказания состояния системы. В общем, задача моделирования общего поведения системы вполне выполнима, даже проста. Таким образом, теория хаоса сосредотачивает усилия не на беспорядке системы — наследственной непредсказуемости системы — а на унаследованном ей порядке — общем в поведении похожих систем.
Таким образом, было бы неправильным сказать, что теория хаоса о беспорядке. Чтобы пояснить это на примере, возьмем аттрактор Лоренца. Он основан на трех дифференциальных уравнениях, трех константах и трех начальных условиях.
Теория хаоса о беспорядке
Аттрактор Лоренца как диаграмма хаотической системы. Эти два графика демонстрируют чувствительную зависимость от первоначальных условий в пределах занятого аттрактором региона.
Аттрактор представляет поведение газа в любое заданное время, и его состояние в определенный момент зависит от его состояния в моменты времени, предшествовавшие данному. Если исходные данные изменить даже на очень маленькие величины, скажем, эти величины малы настолько, что соизмеримы с вкладом отдельных атомов в число Авогадро (что является очень маленьким числом по сравнению со значениями порядка 1024), проверка состояния аттрактора покажет абсолютно другие числа. Это происходит потому, что маленькие различия увеличиваются в результате рекурсии.
Однако, несмотря на это, график аттрактора будет выглядеть достаточно похоже. Обе системы будут иметь абсолютно разные значения в любой заданный момент времени, но график аттрактора останется тем же самым, т.
Теория хаоса говорит, что сложные нелинейные системы являются наследственно непредсказуемыми, но, в то же время, теория хаоса утверждает, что способ выражения таких непредсказуемых систем оказывается верным не в точных равенствах, а в представлениях поведения системы — в графиках странных аттракторов или во фракталах. Таким образом, теория хаоса, о которой многие думают как о непредсказуемости, оказывается, в то же время, наукой о предсказуемости даже в наиболее нестабильных системах.
Применение теории хаоса в реальном мире
Фрактальный папоротник, созданный благодаря игре хаоса. Природные формы (папоротники, облака, горы и т. д.) могут быть воссозданы через систему повторяющихся функций.
При появлении новых теорий, все хотят узнать что же в них хорошего. Итак что хорошего в теории хаоса? Первое и самое важное — теория хаоса — это теория. А значит, что большая ее часть используется больше как научная основа, нежели как непосредственно применимое знание. Теория хаоса является очень хорошим средством взглянуть на события, происходящие в мире отлично от более традиционного четко детерминистического взгляда, который доминировал в науке со времен Ньютона. Зрители, которые посмотрели Парк Юрского периода, без сомнения боятся, что теория хаоса может очень сильно повлиять на человеческое восприятие мира, и, в действительности, теория хаоса полезна как средство интерпретации научных данных по-новому. Вместо традиционных X-Y графиков, ученые теперь могут интерпретировать фазово-пространственные диаграммы которые — вместо того, чтобы описывать точное положение какой-либо переменной в определенный момент времени — представляют общее поведение системы. Вместо того, чтобы смотреть на точные равенства, основанные на статистических данных, теперь мы можем взглянуть на динамические системы с поведением похожим по своей природе на статические данные — т.е. системы с похожими аттракторами. Теория хаоса обеспечивает прочный каркас для развития научных знаний.
Однако, согласно вышесказанному не следует, что теория хаоса не имеет приложений в реальной жизни.
Техники теории хаоса использовались для моделирования биологических систем, которые, бесспорно, являются одними из наиболее хаотических систем из всех что можно себе представить. Системы динамических равенств использовались для моделирования всего — от роста популяций и эпидемий до аритмических сердцебиений.
В действительности, почти любая хаотическая система может быть смоделирована — рынок ценных бумаг порождает кривые, которые можно легко анализировать при помощи странных аттракторов в отличие от точных соотношений; процесс падения капель из протекающего водопроводного крана кажется случайным при анализе невооруженным ухом, но если его изобразить как странный аттрактор, открывается сверхъестественный порядок, которого нельзя было бы ожидать от традиционных средств.
Фракталы находятся везде, наиболее заметны в графических программах как например очень успешная серия продуктов Fractal Design Painter. Техники фрактального сжатия данных все еще разрабатываются, но обещают удивительные результаты как например коэффициента сжатия 600:1. Индустрия специальных эффектов в кино, имела бы горазда менее реалистичные элементы ландшафта (облака, скалы и тени) без технологии фрактальной графики.
В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких, как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов).
И, конечно, теория хаоса дает людям удивительно интересный способ того, как приобрести интерес к математике, одной из наиболее мало-популярной области познания на сегодняшний день.
Теория хаоса | это… Что такое Теория хаоса?
У этого термина существуют и другие значения, см. Теория хаоса (значения).
Диаграмма раздвоения логистической карты, где x → r x (1 — x). Каждый вертикальный сектор показывает аттрактор определённого значения r. Диаграмма отображает удвоение периода когда r увеличивается, что в конечном итоге производит хаос
Тео́рия ха́оса — математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных при определённых условиях явлению, известному как хаос. Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной.
Примерами подобных систем являются атмосфера, турбулентные потоки, биологические популяции, общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы. Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием, эффект Коновала — распределение частот выпадения положительных результатов, или принятия правильных решений.
Теория хаоса — область исследований, связывающая математику и физику.
Содержание
|
Основные сведения
Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий и небольшие изменения в окружающей среде ведут к непредсказуемым последствиям.
Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону и, в каком-то смысле, являются упорядоченными. Такое использование слова «хаос» отличается от его обычного значения (см. хаос в мифологии). Существует также такая область физики, как теория квантового хаоса, изучающая недетерминированные системы, подчиняющиеся законам квантовой механики.
Пионерами теории считаются французский физик и философ Анри Пуанкаре (доказал теорему о возвращении), советские математики А. Н. Колмогоров и В. И. Арнольд и немецкий математик Ю. К. Мозер, построившие теорию хаоса, называемую КАМ (теория Колмогорова — Арнольда — Мозера). Теория вводит понятие аттракторов (в том числе, странных аттракторов как притягивающих канторовых структур), устойчивых орбит системы (т. н. КАМ-торов).
Понятие хаоса
Основная статья: Динамический хаос
Пример чувствительности системы к первоначальным условиям, где x → 4 x (1 — x) и y → x + y, если x y <1 (иначе x + y — 1). Здесь четко видно, что ряды значений x и y через какое-то время заметно отклоняются друг от друга хотя в первоначальных состояниях отличия микроскопические
В бытовом контексте слово «хаос» означает «быть в состоянии беспорядка». В теории хаоса прилагательное хаотический определено более точно. Хотя общепринятого универсального математического определения хаоса нет, обычно используемое определение говорит, что динамическая система, которая классифицируется как хаотическая, должна иметь следующие свойства:
- она должна быть чувствительна к начальным условиям
- она должна иметь свойство топологического смешивания
- её периодические орбиты должны быть всюду плотными.
Более точные математические условия возникновения хаоса выглядят так:
- Система должна иметь нелинейные характеристики, быть глобально устойчивой, но иметь хотя бы одну неустойчивую точку равновесия колебательного типа, при этом размерность системы должна быть не менее 1,5 (т.е. порядок дифференциального уравнения не менее 3-го).
Линейные системы никогда не бывают хаотическими. Для того, чтобы динамическая система была хаотической, она должна быть нелинейной. По теореме Пуанкаре-Бендиксона (Poincaré-Bendixson), непрерывная динамическая система на плоскости не может быть хаотической. Среди непрерывных систем хаотическое поведение имеют только неплоские пространственные системы (обязательно наличие не менее трёх измерений или неевклидова геометрия). Однако дискретная динамическая система на какой-то стадии может проявить хаотическое поведение даже в одномерном или двумерном пространстве.
Чувствительность к начальным условиям
Чувствительность к начальным условиям в такой системе означает, что все точки, первоначально близко приближенные между собой, в будущем имеют значительно отличающиеся траектории. Таким образом, произвольно небольшое изменение текущей траектории может привести к значительному изменению в её будущем поведении. Доказано, что последние два свойства фактически подразумевают чувствительность к первоначальным условиям (альтернативное, более слабое определение хаоса использует только первые два свойства из вышеупомянутого списка).
Чувствительность к начальным условиям более известна как «Эффект бабочки». Термин возник в связи со статьёй «Предсказание: Взмах крыльев бабочки в Бразилии вызовет торнадо в штате Техас», которую Эдвард Лоренц в 1972 году вручил американской «Ассоциации для продвижения науки» в Вашингтоне. Взмах крыльев бабочки символизирует мелкие изменения в первоначальном состоянии системы, которые вызывают цепочку событий, ведущих к крупномасштабным изменениям. Если бы бабочка не хлопала крыльями, то траектория системы была бы совсем другой, что в принципе доказывает определённую линейность системы. Но мелкие изменения в первоначальном состоянии системы могут и не вызывать цепочку событий.
Топологическое смешивание
Топологическое смешивание в динамике хаоса означает такую схему расширения системы, что одна её область в какой-то стадии расширения накладывается на любую другую область. Математическое понятие «смешивание», как пример хаотической системы, соответствует смешиванию разноцветных красок или жидкости.
Тонкости определения
Пример топологического смешивания, где x → 4 x (1 — x) и y → x + y, если x + y <1 (иначе x + y — 1). Здесь синий регион в процессе развития был преобразован сначала в фиолетовый, потом в розовый и красный регионы и в конечном итоге выглядит как облако точек, разбросанных поперек пространства
В популярных работах чувствительность к первоначальным условиям часто путается с самим хаосом. Грань очень тонкая, поскольку зависит от выбора показателей измерения и определения расстояний в конкретной стадии системы. Например, рассмотрим простую динамическую систему, которая неоднократно удваивает первоначальные значения. Такая система имеет чувствительную зависимость от первоначальных условий везде, так как любые две соседние точки в первоначальной стадии впоследствии случайным образом будут на значительном расстоянии друг от друга. Однако её поведение тривиально, поскольку все точки кроме нуля имеют тенденцию к бесконечности, и это не топологическое смешивание. В определении хаоса внимание обычно ограничивается только закрытыми системами, в которых расширение и чувствительность к первоначальным условиям объединяются со смешиванием.
Даже для закрытых систем, чувствительность к первоначальным условиям не идентична с хаосом в смысле изложенном выше. Например, рассмотрим тор (геометрическая фигура, поверхность вращения окружности вокруг оси лежащей в плоскости этой окружности — имеет форму бублика), заданный парой углов (x, y) со значениями от нуля до 2π. Отображение любой точки (x, y) определяется как (2x, y+a), где значение a/2π является иррациональным. Удвоение первой координаты в отображении указывает на чувствительность к первоначальным условиям. Однако, из-за иррационального изменения во второй координате, нет никаких периодических орбит — следовательно отображение не является хаотическим согласно вышеупомянутому определению.
Аттракторы
График аттрактора Лоренца для значений r = 28, σ = 10, b = 8/3
Аттра́ктор (англ. attract — привлекать, притягивать) — множество состояний (точнее — точек фазового пространства) динамической системы, к которому она стремится с течением времени. Наиболее простыми вариантами аттрактора являются притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением) и периодическая траектория (пример — самовозбуждающиеся колебания в контуре с положительной обратной связью), однако бывают и значительно более сложные примеры. Некоторые динамические системы являются хаотическими всегда, но в большинстве случаев хаотическое поведение наблюдается только в тех случаях, когда параметры динамической системы принадлежат к некоторому специальному подпространству.
Наиболее интересны случаи хаотического поведения, когда большой набор первоначальных условий приводит к изменению на орбитах аттрактора. Простой способ продемонстрировать хаотический аттрактор — это начать с точки в районе притяжения аттрактора и затем составить график его последующей орбиты. Из-за состояния топологической транзитивности, это похоже на отображения картины полного конечного аттрактора. Например, в системе описывающей маятник — пространство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая. График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов.
Странные аттракторы
Аттрактор Лоренца как диаграмма хаотической системы. Эти два графика демонстрируют чувствительную зависимость от первоначальных условий в пределах занятого аттрактором региона
Большинство типов движения описывается простыми аттракторами, являющиеся ограниченными циклами. Хаотическое движение описывается странными аттракторами, которые очень сложны и имеют много параметров. Например, простая трехмерная система погоды описывается известным аттрактором Лоренца (Lorenz) — одной из самых известных диаграмм хаотических систем, не только потому, что она была одной из первых, но и потому, что она одна из самых сложных. Другим таким аттрактором является — отображение Рёслера (Rössler), которая имеет двойной период, подобно логистическому отображению. Странные аттракторы появляются в обеих системах, и в непрерывных динамических (типа системы Лоренца) и в некоторых дискретных (например отображения Хенона (Hénon)). Некоторые дискретные динамические системы названы системами Жулиа по происхождению. И странные аттракторы и системы Жулиа имеют типичную рекурсивную, фрактальную структуру. Теорема Пуанкаре–Бендиксона доказывает, что странный аттрактор может возникнуть в непрерывной динамической системе, только если она имеет три или больше измерений. Однако это ограничение не работает для дискретных динамических систем. Дискретные двух- и даже одномерные системы могут иметь странные аттракторы. Движение трёх или большего количества тел, испытывающих гравитационное притяжение при некоторых начальных условиях может оказаться хаотическим движением.
Простые хаотические системы
Хаотическими могут быть и простые системы без дифференциальных уравнений. Примером может быть логистическое отображение, которое описывает изменение количества населения с течением времени. Логистическое отображение является полиномиальным отображением второй степени и часто приводится в качестве типичного примера того, как хаотическое поведение может возникать из очень простых нелинейных динамических уравнений. Ещё один пример — это модель Рикера, которая также описывает динамику населения.
Клеточный автомат — это набор клеток, образующих некоторую периодическую решетку с заданными правилами перехода. Клеточный автомат является дискретной динамической системой, поведение которой полностью определяется в терминах локальных зависимостей. Эволюция даже простых дискретных систем, таких как клеточные автоматы может сильно зависеть от начальных условий. Эта тема подробно рассмотрена в работах Стивена Вольфрама. Простую модель консервативного (обратимого) хаотического поведения демонстрирует так называемое отображение «кот Арнольда». В математике отображение «кот Арнольда» является моделью тора, которую он продемонстрировал в 1960 году с использованием образа кошки.
Показать хаос для соответствующих значений параметра может даже одномерное отображение, но для дифференциального уравнения требуется три или больше измерений. Теорема Пуанкаре — Бендиксона утверждает, что двумерное дифференциальное уравнение имеет очень стабильное поведение. Zhang и Heidel доказали, что трехмерные квадратичные системы только с тремя или четырьмя переменными не могут демонстрировать хаотическое поведение. Причина в том, что решения таких систем являются асимптотическими по отношению к двумерным плоскостям, и поэтому представляют собой стабильные решения.
Математическая теория
Теорема Шарковского — это основа доказательства Ли и Йорке (Li and Yorke) (1975) о том, что одномерная система с регулярным тройным периодом цикла может отобразить регулярные циклы любой другой длины так же, как и полностью хаотических орбит. Математики изобрели много дополнительных способов описать хаотические системы количественными показателями. Сюда входят: рекурсивное измерение аттрактора, экспоненты Ляпунова, графики рекуррентного соотношения, отображение Пуанкаре, диаграммы удвоения и оператор сдвига.
Хронология
Фрактальный папоротник, созданный благодаря игре хаоса. Природные формы (папоротники, облака, горы и т. д.) могут быть воссозданы через систему повторяющихся функций
Первым исследователем хаоса был Анри Пуанкаре. В 1880-х, при изучении поведения системы с тремя телами, взаимодействующими гравитационно, он заметил, что могут быть непериодические орбиты, которые постоянно и не удаляются и не приближаются к конкретной точке. В 1898 Жак Адамар издал влиятельную работу о хаотическом движении свободной частицы, скользящей без трения по поверхности постоянной отрицательной кривизны. В своей работе «бильярд Адамара» он доказал, что все траектории непостоянны и частицы в них отклоняются друг от друга с положительной экспонентой Ляпунова.
Почти вся более ранняя теория, под названием эргодическая теория, была разработана только математиками. Позже нелинейные дифференциальные уравнения изучали Г. Биргхоф, A. Колмогоров, M. Каретник, Й. Литлвуд и Стивен Смэйл. Кроме С. Смэйла, на изучение хаоса всех их вдохновила физика: поведение трёх тел в случае с Г. Биргхофом, турбуленция и астрономические исследования в случае с А. Колмогоровым, радиотехника в случае с М. Каретником и Й. Литлвудом. Хотя хаотическое планетарное движение не изучалось, экспериментаторы столкнулись с турбуленцией в жидкости и непериодическими колебаниями в радиосхемах, не имея достаточной теории чтобы это объяснить.
Несмотря на попытки понять хаос в первой половине двадцатого столетия, теория хаоса как таковая начала формироваться только с середины столетия. Тогда для некоторых учёных стало очевидно, что преобладающая в то время линейная теория просто не может объяснить некоторые наблюдаемые эксперименты подобно логистическому отображению. Чтобы заранее исключить неточности при изучении — простые «помехи» в теории хаоса считали полноценной составляющей изучаемой системы. Основным катализатором для развития теории хаоса стала электронно-вычислительная машина. Большая часть математики в теории хаоса выполняет повторную итерацию простых математических формул, которые делать вручную непрактично. Электронно-вычислительные машины делали такие повторные вычисления достаточно быстро, тогда как рисунки и изображения позволяли визуализировать эти системы.
Одним из пионеров в теории хаоса был Эдвард Лоренц, интерес которого к хаосу появился случайно, когда он работал над предсказанием погоды в 1961 году. Погодное Моделирование Лоренц выполнял на простом цифровом компьютере McBee LGP-30. Когда он захотел увидеть всю последовательность данных, тогда, чтобы сэкономить время, он запустил моделирование с середины процесса. Хотя это можно было сделать введя данные с распечатки, которые он вычислил в прошлый раз.
К его удивлению погода, которую машина начала предсказывать, полностью отличалась от погоды, рассчитанной прежде. Лоренц обратился к компьютерной распечатке. Компьютер работал с точностью до 6 цифр, но распечатка округлила переменные до 3 цифр, например значение 0.506127 было напечатано как 0.506. Это несущественное отличие не должно было иметь фактически никакого эффекта. Однако Лоренц обнаружил, что малейшие изменения в первоначальных условиях вызывают большие изменения в результате. Открытию дали имя Лоренца и оно доказало, что Метеорология не может точно предсказать погоду на период более недели. Годом ранее, Бенуа Мандельброт нашёл повторяющиеся образцы в каждой группе данных о ценах на хлопок. Он изучал теорию информации и заключил, что Структура помех подобна набору Регента: в любом масштабе пропорция периодов с помехами к периодам без них была константа — значит ошибки неизбежны и должны быть запланированы. Мандельброт описал два явления: «эффект Ноя», который возникает, когда происходят внезапные прерывистые изменения, например, изменение цен после плохих новостей, и «эффект Иосифа» в котором значения постоянны некоторое время, но все же внезапно изменяются впоследствии. В 1967 он издал работу «Какой длины побережье Великобритании? Статистические данные подобностей и различий в измерениях» доказывая, что данные о длине береговой линии изменяются в зависимости от масштаба измерительного прибора. Он утверждал, что клубок бечевки кажется точкой, если его рассматривать издалека (0-мерное пространство), он же будет клубком или шаром, если его рассматривать достаточно близко (3-мерное пространство) или может выглядеть замкнутой кривой линией сверху (1-мерное пространство). Он доказал, что данные измерения объекта всегда относительны и зависят от точки наблюдения.
Объект, изображения которого являются постоянными в различных масштабах («самоподобие») является фракталом (например кривая Коха или «снежинка»). В 1975 году Мандельброт опубликовал работу «Фрактальная геометрия природы», которая стала классической теорией хаоса. Некоторые биологические системы, такие как система кровообращения и бронхиальная система, подходят под описание фрактальной модели.
Турбулентные потоки воздуха от крыла самолета, образующиеся во время его посадки. Изучение критической точки, после которой система создает турбулентность, были важны для развития теории Хаоса. Например, советский физик Лев Ландау разработал Ландау-Хопф теорию турбулентности. Позже, Дэвид Руелл и Флорис Тейкнс предсказали, вопреки Ландау, что турбулентность в жидкости могла развиться через странный аттрактор, то есть основную концепцию теории хаоса
Явления хаоса наблюдали многие экспериментаторы ещё до того, как его начали исследовать. Например, в 1927 году Ван дер Поль, а в 1958 году П. Ивес. 27 ноября 1961 Й. Уэда, будучи аспирантом в лаборатории Киотского университета, заметил некую закономерность и назвал её «случайные явления превращений», когда экспериментировал с аналоговыми вычислительными машинами. Тем не менее его руководитель не согласился тогда с его выводами и не позволил ему представить свои выводы общественности до 1970 года. В декабре 1977 Нью-Йоркская академия наук организовала первый симпозиум о теории хаоса, который посетили Дэвид Руелл, Роберт Мей, Джеймс А. Иорк, Роберт Шоу, Й. Даян Фермер, Норман Пакард и метеоролог Эдвард Лоренц. В следующем году, Митчелл Феидженбом издал статью «Количественная универсальность для нелинейных преобразований», где он описал логистические отображения. М. Феидженбом применил рекурсивную геометрию к изучению естественных форм, таких как береговые линии. Особенность его работы в том, что он установил универсальность в хаосе и применял теорию хаоса ко многим явлениям. В 1979 Альберт Дж. Либчейбр на симпозиуме в Осине, представил свои экспериментальные наблюдения каскада раздвоения, который ведет к хаосу. Его наградили премией Вольфа в физике вместе с Митчеллом Дж. Фейгенбаумом в 1986 «за блестящую экспериментальную демонстрацию переходов к хаосу в динамических системах». Тогда же в 1986 Нью-Йоркская Академия Наук вместе с национальным Институтом Мозга и центром Военно-морских исследований организовали первую важную конференцию по хаосу в биологии и медицине. Там Бернардо Уберман продемонстрировал математическую модель глаза и нарушений его подвижности среди шизофреников. Это привело к широкому применению теории хаоса в физиологии в 1980-х, например в изучении патологии сердечных циклов. В 1987 Пер Бак, Чао Тан и Курт Висенфелд напечатали статью в газете, где впервые описали систему самодостаточности (СС), которая является одним из природных механизмов. Многие исследования тогда были сконцентрированы вокруг крупномасштабных естественных или социальных систем. CC стала сильным претендентом на объяснение множества естественных явлений, включая землетрясения, солнечные всплески, колебания в экономических системах, формирование ландшафта, лесные пожары, оползни, эпидемии и биологическую эволюцию. Учитывая нестабильное и безмасштабное распределение случаев возникновения, странно, что некоторые исследователи предложили рассмотреть как пример CC возникновение войн. Эти «прикладные» исследования включали в себя две попытки моделирования: разработка новых моделей и приспособление существующих к данной естественной системе.
В тот же самый год Джеймс Глеик издал работу «Хаос: создание новой науки», которая стала бестселлером и представила широкой публике общие принципы теории хаоса и её хронологию. Теория хаоса прогрессивно развивалась как межпредметная и университетская дисциплина, главным образом под названием «анализ нелинейных систем». Опираясь на концепцию Томаса Куна о парадигме сдвига, много «учёных-хаотиков» (так они сами назвали себя) утверждали, что эта новая теория и есть пример сдвига.
Доступность более дешевых, более мощных компьютеров расширяет возможности применения теории хаоса. В настоящее время, теория хаоса продолжает быть очень активной областью исследований, вовлекая много разных дисциплин (математика, топология, физика, биология, метеорология, астрофизика, теория информации, и т.д.).
Применение
Теория хаоса применяется во многих научных дисциплинах: математика, биология, информатика, экономика, инженерия, финансы, философия, физика, политика, психология и робототехника. В лаборатории хаотическое поведение можно наблюдать в разных системах, например электрические схемы, лазеры, химические реакции, динамика жидкостей и магнитно-механических устройств. В природе хаотическое поведение наблюдается в движении спутников солнечной системы, эволюции магнитного поля астрономических тел, приросте населения в экологии, динамике потенциалов в нейронах и молекулярных колебаниях. Есть сомнения о существовании динамики хаоса в тектонике плит и в экономике.
Одно из самых успешных применений теории хаоса было в экологии, когда динамические системы похожие на модель Рикера использовались, чтобы показать зависимость прироста населения от его плотности. В настоящее время теория хаоса также применяется в медицине при изучении эпилепсии для предсказаний приступов, учитывая первоначальное состояние организма. Похожая область физики, названная квантовой теорией хаоса, исследует связь между хаосом и квантовой механикой. Недавно появилась новая область, названная хаосом относительности, чтобы описать системы, которые развиваются по законам общей теории относительности.
Различия между случайными и хаотическими данными
Только по исходным данным трудно сказать, каким является наблюдаемый процесс — случайным или хаотическим, потому что практически не существует явного чистого ‘сигнала’ отличия. Всегда будут некоторые помехи, даже если их округлять или не учитывать. Это значит, что любая система, даже если она детерминированная, будет содержать немного случайностей. Чтобы отличить детерминированный процесс от стохастического, нужно знать, что детерминированная система всегда развивается по одному и тому же пути от данной отправной точки. Таким образом, чтобы проверить процесс на детерминизм необходимо:
- выбрать тестируемое состояние;
- найти несколько подобных или почти подобных состояний; и
- сравнить их развитие во времени.
Погрешность определяется как различие между изменениями в тестируемом и подобном состояниях. Детерминированная система будет иметь очень маленькую погрешность (устойчивый, постоянный результат) или она будет увеличиваться по экспоненте со временем (хаос). Стохастическая система будет иметь беспорядочно распределенную погрешность.
По существу все методы определения детерминизма основываются на обнаружении состояний, самых близких к данному тестируемому (то есть, измерению корреляции, экспоненты Ляпунова, и т.д.). Чтобы определить состояние системы обычно полагаются на пространственные методы определения стадии развития. Исследователь выбирает диапазон измерения и исследует развитие погрешности между двумя близлежащими состояниями. Если она выглядит случайной, тогда нужно увеличить диапазон, чтобы получить детерминированную погрешность. Кажется, что это сделать просто, но на деле это не так. Во-первых, сложность состоит в том, что, при увеличении диапазона измерения, поиск близлежащего состояния требует намного большего количества времени для вычислений чтобы найти подходящего претендента. Если диапазон измерения выбран слишком маленьким, то детерминированные данные могут выглядеть случайными, но если диапазон слишком большой, то этого не случится — метод будет работать.
Когда в нелинейную детерминированную систему вмешиваются внешние помехи, её траектория постоянно искажается. Более того, действия помех усиливаются из-за нелинейности и система показывает полностью новые динамические свойства. Статистические испытания, пытающиеся отделить помехи от детерминированной основы или изолировать их, потерпели неудачу. При наличии взаимодействия между нелинейными детерминированными компонентами и помехами, в результате появляется динамика, которую традиционные испытания на нелинейность иногда не способны фиксировать.
Литература
- Ахромеева Т. С., Курдюмов С. П., Малинецкий Г. Г., Самарский А. А. Нестационарные структуры и диффузионный хаос. М.: Наука, 1992.
- Малинецкий Г. Г. Хаос. Структуры. Вычислительный эксперимент. Введение в нелинейную динамику. 3-е изд. М.: УРСС, 2001.
- Малинецкий Г. Г., Потапов А. Б., Подлазов А. В. Нелинейная динамика: подходы, результаты, надежды. М.: УРСС, 2006.
См.
также- Фрактал
- Хаос
- Динамический хаос
- Уильям Брок (автор работы «Теория Хаоса», 2001 г.)
- Эффект бабочки
- Синергетика
- Нелинейная динамика
- И грянул гром
- Фрактальный анализ рынка
- Странный аттрактор Лоренца
- Аттрактор Рёсслера
- Аттрактор Плыкина
Ссылки
- Электронная библиотека по нелинейной динамике — книги по теории хаоса
- Проект Энтропия — статьи по теории хаоса, фракталам, аттракторам
- Хаос и порядок дискретных систем в свете синергетической теории информации
- Хаос. Нелинейная динамика
- Теория хаоса
Что такое теория хаоса?
По
Кэролайн Бэнтон
Полная биография
Кэролайн Бэнтон имеет более чем 6-летний опыт работы внештатным автором статей о бизнесе и финансах. Она также пишет биографии для Story Terrace.
Узнайте о нашем редакционная политика
Обновлено 14 июля 2022 г.
Рассмотрено
Саманта Зильберштейн
Рассмотрено Саманта Зильберштейн
Полная биография
Саманта Зильберштейн является сертифицированным специалистом по финансовому планированию, обладателем лицензий FINRA Series 7 и 63, лицензированным агентом штата Калифорния по страхованию жизни, несчастных случаев и медицинского страхования и CFA. Она проводит дни, работая с сотнями сотрудников некоммерческих организаций и организаций высшего образования над их личными финансовыми планами.
Узнайте о нашем Совет финансового контроля
Факт проверен
Ариэль Кураж
Факт проверен Ариэль Кураж
Полная биография
Ариэль Кураж — опытный редактор, исследователь и специалист по проверке фактов. Она выполняла работу по редактированию и проверке фактов для нескольких ведущих финансовых изданий, включая The Motley Fool и Passport to Wall Street.
Узнайте о нашем редакционная политика
Теория хаоса — это сложная математическая теория, пытающаяся объяснить влияние, казалось бы, незначительных факторов. Некоторые считают, что теория хаоса объясняет хаотические или случайные явления, и эта теория часто применяется к финансовым рынкам, а также к другим сложным системам, таким как предсказание погоды. Хаотические системы какое-то время предсказуемы, а затем кажутся случайными.
Истоки теории хаоса
Первый настоящий эксперимент по теории хаоса провел метеоролог Эдвард Лоренц. Лоренц работал с системой уравнений для предсказания погоды. В 1961 году Лоренц хотел воссоздать прошлую последовательность погоды, используя компьютерную модель, основанную на 12 переменных, включая скорость ветра и температуру. Эти переменные или значения были нанесены на график с линиями, которые поднимались и опускались с течением времени. Лоренц повторял более раннее моделирование в 1961 году.
Однако в этот день Лоренц округлил свои значения переменных всего до трех знаков после запятой вместо шести. Это крошечное изменение резко изменило всю картину моделируемой погоды за два месяца. Таким образом, Лоренц доказал, что, казалось бы, незначительные факторы могут иметь огромное влияние на общий результат.
Теория хаоса исследует последствия небольших происшествий, которые могут существенно повлиять на результаты, казалось бы, не связанных между собой событий.
Теория хаоса и рынки
Есть два распространенных заблуждения относительно фондовых рынков. Один основан на классической экономической теории и утверждает, что рынки на 100% эффективны и непредсказуемы. Другая теория состоит в том, что рынки на каком-то уровне предсказуемы. Иначе как крупные торговые дома и инвесторы стабильно получают прибыль?
Правда в том, что рынки — это сложные и хаотичные системы, и в их поведении есть как системные, так и случайные компоненты. Прогнозы фондового рынка могут быть точными лишь до определенной степени.
Как доказал Лоренц, сложные хаотические системы уязвимы для незначительных изменений, которые могут нарушить работу системы, оттолкнув ее далеко от равновесия. Динамику рыночной системы можно описать как две основные петли обратной связи и причинно-следственной связи, влияющие на различные аспекты фондового рынка. Цикл положительной обратной связи является самоусиливающимся. Например, положительный эффект одной переменной увеличивает другую переменную, которая, в свою очередь, также увеличивает первую переменную. Это приводит к экспоненциальному росту системы, выводя ее из равновесия и в конечном итоге приводя к коллапсу системы (пузырю). И наоборот, петля отрицательной обратной связи имеет аналогичный эффект, система реагирует на изменение в противоположном направлении.
Периоды с высокой неопределенностью могут быть вызваны не только системной динамикой. Факторы окружающей среды, такие как стихийные бедствия, землетрясения или наводнения, также могут вызывать волатильность рынков, равно как и внезапные падения цен на отдельные акции.
В финансах теория хаоса утверждает, что цена ценной бумаги меняется в последнюю очередь. Используя теорию хаоса, изменение цены определяется с помощью математических предсказаний следующих факторов: личные мотивы трейдера (такие как сомнения, желание или надежда, все они нелинейны и сложны), изменения объема, ускорение изменений, и импульс изменений.
Хотя некоторые теоретики утверждают, что теория хаоса может помочь инвесторам повысить свою эффективность, применение теории хаоса к финансам остается спорным.
Определение теории хаоса
По
Клэй Халтон
Полная биография
Клэй Халтон (Clay Halton) — редактор Investopedia, более трех лет работает в сфере финансовых публикаций. В основном он пишет и редактирует контент о личных финансах, уделяя особое внимание финансам ЛГБТК+.
Узнайте о нашем редакционная политика
Обновлено 26 апреля 2022 г.
Рассмотрено
Роберт С. Келли
Рассмотрено Роберт К. Келли
Полная биография
Роберт Келли является управляющим директором XTS Energy LLC и имеет более чем тридцатилетний опыт работы в качестве руководителя бизнеса. Он профессор экономики и привлек более 4,5 миллиардов долларов инвестиционного капитала.
Узнайте о нашем Совет финансового контроля
Факт проверен
Сюзанна Квилхауг
Факт проверен Сюзанна Квилхауг
Полная биография
Сюзанна — исследователь, писатель и специалист по проверке фактов. Она имеет степень бакалавра финансов в государственном университете Бриджуотер и работала над печатным контентом для владельцев бизнеса, национальных брендов и крупных изданий.
Узнайте о нашем редакционная политика
Что такое Теория Хаоса?
Теория хаоса — это математическая концепция, объясняющая возможность получения случайных результатов из нормальных уравнений. Основной постулат, лежащий в основе этой теории, заключается в основополагающем представлении о небольших событиях, существенно влияющих на результаты, казалось бы, не связанных между собой событий. Теория хаоса также называется «нелинейной динамикой».
Понимание теории хаоса
Теория хаоса применялась ко многим вещам, от предсказания погодных условий до фондового рынка. Проще говоря, теория хаоса — это попытка увидеть и понять лежащий в основе порядок сложных систем, которые на первый взгляд могут показаться беспорядочными.
Первый реальный эксперимент по теории хаоса был проведен в 1960 году метеорологом Эдвардом Лоренцем. Он работал с системой уравнений, чтобы предсказать, какой будет погода. В 1961 он хотел воссоздать прошлую последовательность погоды, но начал последовательность на полпути и распечатал только первые три десятичных знака вместо полных шести. Это радикально изменило последовательность, которую можно было бы разумно предположить, точно отражающую исходную последовательность, с небольшим изменением лишь на три десятичных знака. Однако Лоренц доказал, что кажущиеся незначительными факторы могут иметь огромное влияние на общий результат. Теория хаоса исследует последствия небольших происшествий, резко влияющих на результаты, казалось бы, не связанных между собой событий.
Теория хаоса на фондовом рынке
Теория хаоса — противоречивая и сложная теория, которая использовалась для объяснения некоторых особенностей систем, которые традиционно было трудно точно смоделировать. Финансовые рынки попадают в эту категорию с дополнительным преимуществом, заключающимся в наличии богатого набора исторических данных. Один интересный финансовый феномен, который теория хаоса может помочь проиллюстрировать, если не объяснить, заключается в том, как кажущиеся здоровыми финансовые рынки могут страдать от внезапных потрясений и крахов.
Сторонники теории хаоса считают, что цена акции, облигации или другой ценной бумаги меняется в последнюю очередь. Это говорит о том, что периоды низкой волатильности цен не обязательно отражают истинное состояние рынка. Рассмотрение цены как запаздывающего индикатора ставит инвесторов в тупик, поскольку они могут обнаруживать обвалы до того, как они произойдут. Это, конечно, соответствует опыту большинства инвесторов, переживших события черного лебедя и финансовые кризисы. Есть некоторые, кто, кажется, может заранее подготовиться к рыночным спадам, но они часто копают гораздо глубже, чем ценовые данные, чтобы понять структурные недостатки, которые большая часть рынка упустила из виду.
Большой недостаток теории хаоса заключается в том, что она слишком часто используется как способ дисконтирования инвестиций. Хотя рынки практически невозможно предсказать в краткосрочной перспективе, они более постоянны в долгосрочной перспективе. Тот факт, что вы не можете рассчитать время следующего краха, не означает, что вы не должны инвестировать в акции с сильными фундаментальными показателями, которые имеют тенденцию работать в долгосрочной перспективе.
Источники статей
Investopedia требует, чтобы авторы использовали первоисточники для поддержки своей работы.