40. Понятие о гомеостазе. Общие закономерности гомеостаза живых систем. Виды гомеостаза.
Гомеостаз — способность живых систем противостоять изменениям и сохранять динамическое постоянство состава и свойств (1929г Кеннон). Как защита от чужеродной генетической информации, проникновение которой внутрь организма и последующая ее реализация привели бы к отравлению токсинами, возник такой вид гомеостаза, как генетический гомеостаз, обеспечивающий генетическое постоянство внутренней среды организма. В его основе лежат иммунологические механизмы, включающие неспецифическую и специфическую защиту собственной целостности и индивидуальности организма. Другой вид гомеостаза – биохимический гомеостаз способствует поддержанию постоянства химического состава жидкой внеклеточной среды организма, а также постоянства химического состава цитоплазмы и плазмолеммы клеток. физиологический гомеостаз обеспечивает постоянство процессов жизнедеятельности организма. Структурный гомеостаз обеспечивает постоянство строения на всех уровнях организации живого.
Организм – саморегулирующаяся живая система. В основе саморегуляции биологических систем лежит принцип прямой и обратной связи. Обратная связь бывает отрицательной и положительной. Механизмы гомеостаза дублируются на разных уровнях. Этим в природе реализуется принцип многоконтурности регуляции систем. Главные контуры представлены клеточными и тканевыми гомеостатическими механизмами. Механизмы гомеостаза претерпевают значительные изменения на протяжении онтогенеза человека. Только на 2-ой неделе после рождения вступают в действие биологические защитные реакции, а их эффективность продолжает повышаться к 10годам.
41.Биологические ритмы. Классификация биоритмов. Понятие о десинхронозе.
Биологические ритмы — фундаментальное свойство органического мира, обеспечивает его способность адаптации и выживания в циклически меняющихся условиях внешней среды.
Биоритмы — циклические колебания интенсивности и характера биологических процессов и явлений. Одни биологические ритмы относительно самостоятельны (частота сокращений сердца, дыхания), другие связаны с приспособлением организмов к геофизическим циклам — суточным (колебания интенсивности деления клеток, обмена веществ, двигательной активности животных), приливным (биологические процессы у организмов, связанные с уровнем морских приливов), годичным (изменение численности и активности животных, роста и развития растений и др.). Наука о биологических ритмах — хронобиология.
Классификация: а) околочасовые (с периодичностью один или несколько часов), свойственны внутриклеточному метаболизму; б) ультрадианные
Хронобиология – наука, комбинирующая исследования и количественно оценивающая механизмы временной структуры. Одна из современных областей биологии, изучает механизмы регуляции суточных ритмов митотической активности, что имеет важное значение для медицины.
Десинхроноз – нарушение приуроченности биоритмов человека к периодическим изменениям во внешней среде (перелет в др. часовой пояс). Последствия – обострения хронических заболеваний, повышенная утомляемость, снижение работоспособности
Методическая разработка на тему: «Гомеостаз и его показатели»
Государственное автономное образовательное учреждение
среднего профессионального образования Республики Крым
«ЯЛТИНСКИЙ МЕДИЦИНСКИЙ КОЛЛЕДЖ»
Методическая разработка лекции № 49 (1)
I. Методический блок
Тема лекции: Гомеостаз и его показатели.
Дисциплина: ПМ 03 Проведение лабораторных биохимических исследований
Специальность: 31.02.03 Лабораторная диагностика
Курс: III Семестр: VI Количество часов: 2
Преподаватель: Людмила Сергеевна Мамыкина
Ялта
Цель лекции: Гомеостаз является фундаментальным свойством живого организма, направленным на поддержание динамической устойчивости параметров его функциональных систем при изменяющихся условиях внешней среды
1. Учебные цели:
Студент должен знать:
После изучения данной темы студенты должны знать состав и биологическую роль макро- и микроэлементов, контролирующие водно-солевое равновесие в организме, уметь применять полученные знания для решения теоретических и практических задач. Знать сущность гомеостаза, физиологические механизмы поддержания гомеостаза, основы регуляции гомеостаза. Изучить основные виды гомеостаза. Знать возрастные особенности гомеостаза
2.
Развивающие цели: развивать у студентов умение — логического мышления; обобщать полученные знания; проводить анализ и сравнение, делать необходимые выводы; умение владеть собой, выдержки, самообладания.3. Воспитательные цели: Привитие любви к избранной профессии, развитие профессионального кругозора, творческого подхода к учебной деятельности, формирование необходимых коммуникативных качеств, связи с особенностями выбранной профессии.
4. Общие компетенции:
ОК 2. | Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество |
ОК 4. | Осуществлять поиск, анализ и оценку информации, необходимой для постановки и решения профессиональных задач, профессионального и личностного развития. |
ОК 5. | Использовать информационно-коммуникационные технологии для совершенствования профессиональной деятельности. |
ОК 6. | Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями. |
ОК 7. | Ставить цели, мотивировать деятельность подчиненных, организовывать и контролировать их работу с принятием на себя ответственности за результат выполнения заданий. |
ОК 9. | Быть готовым к смене технологий в профессиональной деятельности. |
ОК 14. | Вести здоровый образ жизни, заниматься физической культурой и спортом для укрепления здоровья, достижения жизненных и профессиональных целей. |
Межпредметные связи:
Анатомия и физиология человека
Организационная структура лекции
№ п/п | Основные этапы лекции и их содержание
| Цели в уровнях усвоения | Тип лекции, методы и способы обучения | Дидактическое обеспечение, наглядность, ТСО |
I
| Подготовительный этап.
1. Организационный момент. 2. Формулирование темы, обоснование актуальности. 3. Определение учебных целей и мотивация учебной деятельности студентов.
|
|
Заполнение журнала
См. пп 1 – 2 | |
II
| Основной этап
План изучения лекционного материала:
1. Организм как открытая саморегулирующаяся система. 2. Понятие о гомеостазе.
3. Виды гомеостаза. |
II
II
II
|
Тематическая лекция
Объяснения с элементами диалога
Объяснения с элементами беседы
Объяснения с элементами беседы
|
Методическая разработка
Ноутбук
|
III
|
Заключительный этап
1. Резюме лекции.
2. Ответы на заданные вопросы
3. Задание для самоподготовки
Работа с конспектами, учебной и специальной литературой
|
|
Учебник Л. М. Пустовалова «Теория лабораторных биохимических исследований» стр. 266-272, , конспект интернет-ресурсы |
II. Информационный блок
1. ОРГАНИЗМ КАК ОТКРЫТАЯ САМОРЕГУЛИРУЮЩАЯСЯ СИСТЕМА.
Живой организм – открытая система, имеющая связь с окружающей средой посредством нервной, пищеварительной, дыхательной, выделительной систем и др.
В процессе обмена веществ с пищей, водой, при газообмене в организм поступают разнообразные химические соединения, которые в организме подвергаются изменениям, входят в структуру организма, но не остаются постоянно. Усвоенные вещества распадаются, выделяют энергию, продукты распада удаляются во внешнюю среду. Разрушенная молекула заменяется новой и т.д.
Организм – открытая, динамичная система. В условиях непрерывно меняющейся среды организм поддерживает устойчивое состояние в течение определенного времени.
2. ПОНЯТИЕ О ГОМЕОСТАЗЕ.
В середине ХIХ в французский физиолог Клод Бернар ввел понятие о внутренней среде, которую рассматривал как совокупность жидкостей организма. Это понятие расширил американский физиолог Уолтер Кэннон, который подразумевал под внутренней средой всю совокупность жидкостей (кровь, лимфа, тканевая жидкость), которые участвуют в обмене веществ и поддержании гомеостаза. Организм человека приспосабливается к постоянно меняющимся условиям внешней среды, однако при этом внутренняя среда остается постоянной и ее показатели колеблются в очень узких границах. Поэтому человек может жить в различных условиях окружающей среды. Некоторые физиологические параметры регулируются особенно тщательно и тонко, например температура тела, артериальное давление, содержание глюкозы, газов, солей, ионов кальция в крови, кислотно-щелочное равновесие, объем крови, ее осмотическое давление, аппетит многие другие.
Гомеостаз – свойство живого организма сохранять относительное динамическое постоянство внутренней среды. Гомеостаз выражается в относительном постоянстве химического состава, осмотического давления, устойчивости основных физиологических функций. Гомеостаз специфичен и обусловлен генотипом.
Сохранение целостности индивидуальных свойств организма один из наиболее общих биологических законов. Этот закон обеспечивается в вертикальном ряду поколений механизмами воспроизведения, а на протяжении жизни индивидуума – механизмами гомеостаза.
Явление гомеостаза представляет собой эволюционно выработанное, наследственно-закрепленное адаптационное свойство организма к обычным условиям окружающей среды. Однако эти условия могут кратковременно или длительно выходить за пределы нормы. В таких случаях явления адаптации характеризуются не только восстановлением обычных свойств внутренней среды, но и кратковременными изменениями функции (например, учащение ритма сердечной деятельности и увеличение частоты дыхательных движений при усиленной мышечной работе). Реакции гомеостаза могут быть направлены на:
1. поддержание известных уровней стационарного состояния;
2. устранение или ограничение действия вредностных факторов;
3. выработку или сохранение оптимальных форм взаимодействия организма и среды в изменившихся условиях его существования. Все эти процессы и определяют адаптацию.
Поэтому понятие гомеостаза означает не только известное постоянство различных физиологических констант организма, но и включает процессы адаптации и координации физиологических процессов, обеспечивающих единство организма не только в норме, но и при изменяющихся условиях его существования.
Основные компоненты гомеостаза были определены К. Бернаром, и их можно разделить на три группы:
А. Вещества, обеспечивающие клеточные потребности:
· Вещества, необходимые для образования энергии, для роста и восстановления – глюкоза, белки, жиры.
· Вода.
· NaCl, Ca и другие неорганические вещества.
· Кислород.
· Внутренняя секреция.
Б. Окружающие факторы, влияющие на клеточную активность:
· Осмотическое давление.
· Температура.
· Концентрация водородных ионов (рН).
В. Механизмы, обеспечивающие структурное и функциональное единство:
· Наследственность.
· Регенерация.
· Иммунобиологическая реактивность.
Живой организм представляет сложную управляемую систему, где происходит взаимодействие многих переменных внешней и внутренней среды. Общим для всех систем является наличие входных переменных, которые в зависимости от свойств и законов поведения системы преобразуются в выходные переменные.
Рис. 1 — Общая схема гомеостаза живых систем
Выходные переменные зависят от входных и законов поведения системы.
Влияние выходного сигнала на управляющую часть системы называется обратной связью, которая имеет большое значение в саморегуляции (гомеостатической реакции). Различают отрицательную и положительную обратную связь.
Отрицательная обратная связь уменьшает влияние входного сигнала на величину выходного по принципу: «чем больше (на выходе), тем меньше (на входе)». Она способствует восстановлению гомеостаза системы.
При положительной обратной связи величина входного сигнала увеличивается по принципу: «чем больше (на выходе), тем больше (на входе)». Она усиливает возникшее отклонение от исходного состояния, что приводит к нарушению гомеостаза.
Однако все виды саморегуляции действуют по одному принципу: самоотклонение от исходного состояния, что служит стимулом для включения механизмов коррекции. Так, в норме рН крови составляет 7,32 – 7,45. Сдвиг рН на 0,1 приводит к нарушению сердечной деятельности. Этот принцип был описан Анохиным П.К. в 1935 году и назван принципом обратной связи, который служит для осуществления приспособительных реакций.
Общий принцип гомеостатической реакции (Анохин: «Теория функциональных систем»):
отклонение от исходного уровня → сигнал → включение регуляторных механизмов по принципу обратной связи → коррекция изменения (нормализация).
Так, при физической работе концентрация СО2в крови увеличивается → рН сдвигается в кислую сторону → сигнал поступает в дыхательный центр продолговатого мозга → центробежные нервы проводят импульс к межреберным мышцам и дыхание углубляется → снижение СО2в крови, рН восстанавливается.
3. ВИДЫ ГОМЕОСТАЗА
В эволюционном плане гомеостаз — это наследственно закреплённые адаптации организма к обычным условиям окружающей среды.
Различают следующие основные виды гомеостаза:
1) генетический
2) структурный
3) гомеостаз жидкой части внутренней среды (кровь, лимфа, межтканевая жидкость)
4) иммунологический.
Генетический гомеостаз — сохранение генетической стабильности благодаря прочности физико-химических связей ДНК и её способности к восстановлению после повреждения (репарация ДНК). Самовоспроизведение — фундаментальное свойство живого, оно основано на процессе редупликации ДНК. Сам механизм этого процесса, при котором новая нить ДНК строится строго комплементарно около каждой из составляющих молекул двух старых нитей, является оптимальным для точной передачи информации. Точность этого процесса высока, но всё же могут происходить ошибки при редупликации. Нарушение структуры молекул ДНК может происходить и в её первичных цепях вне связи с редупликацией под воздействием мутагенных факторов. В большинстве случаев происходит восстановление генома клетки, исправление повреждения, благодаря репарации. При повреждении механизмов репарации происходит нарушение генетического гомеостаза как на клеточном, так и на организменном уровнях.
Важным механизмом сохранения генетического гомеостаза является диплоидное состояние соматических клеток у эукариот. Диплоидные клетки отличаются большей стабильностью функционирования, т.к. наличие у них двух генетических программ повышает надёжность генотипа. Стабилизация сложной системы генотипа обеспечивается явлениями полимерии и другими видами взаимодействия генов. Большую роль в процессе гомеостаза играют регуляторные гены, контролирующие активность оперонов.
Структурный гомеостаз — это постоянство морфологической организации на всех уровнях биологических систем. Целесообразно выделить гомеостаз клетки, ткани, органа, систем организма. Гомеостаз нижележащих структур обеспечивает морфологическое постоянство вышестоящих структур и является основой их жизнедеятельности.
Клетке, как сложной биологической системе, присуща саморегуляция. Установление гомеостаза клеточной среды обеспечивается мембранными системами, с которыми связаны биоэнергетические процессы и регулирование транспорта веществ в клетку и из неё. В клетке непрерывно идут процессы изменения и восстановления органоидов, разрушаются и восстанавливаются и сами клетки. Восстановление внутриклеточных структур, клеток, тканей, органов в процессе жизнедеятельности организма происходит благодаря физиологической регенерации. Восстановление структур после повреждения — репаративной регенерации.
Гомеостаз жидкой части внутренней среды — постоянство состава крови, лимфы, тканевой жидкости, осмотического давления, общей концентрации электролитов и концентрации отдельных ионов, содержания в крови питательных веществ и т.д. Эти показатели даже при значительных изменениях условий внешней среды удерживаются на определённом уровне, благодаря сложным механизмам.
К примеру, одним из важнейших физико-химических параметров внутренней среды организма является кислотно-щелочное равновесие. Соотношение водородных и гидроксильных ионов во внутренней среде зависит от содержания в жидкостях организма (кровь, лимфа, тканевая жидкость) кислот — донаторов протонов и буферных оснований — акцепторов протонов. Обычно активную реакцию среды оценивают по иону H+. Величина pH (концентрация водородных ионов в крови) является одним из стабильных физиологических показателей и колеблется у человека в узких пределах — от 7,32 до 7,45. От соотношения водородных и гидроксильных ионов в значительной мере зависят активность ряда ферментов, проницаемость мембран, процессы синтеза белка и т.д.
В организме имеются различные механизмы, обеспечивающие поддержание кислотно-щелочного равновесия. Во-первых, это буферные системы крови и тканей (карбонатный, фосфатные буферы, тканевые белки). Буферными свойствами обладает и гемоглобин, он связывает углекислоту и препятствует её накоплению в крови. Сохранению нормальной концентрации водородных ионов способствует и деятельность почек, поскольку значительное количество метаболитов, имеющих кислую реакцию, выводится с мочой. Если перечисленные механизмы оказываются недостаточными, концентрация углекислоты в крови увеличивается, происходит некоторый сдвиг pH в кислую сторону. В таком случае возбуждается дыхательный центр, усиливается легочная вентиляция, что приводит к понижению содержания углекислоты и нормализации концентрации водородных ионов.
Чувствительность тканей к изменениям внутренней среды различна. Так сдвиг pH на 0,1 в ту или другую сторону от нормы приводит к значительным нарушениям деятельности сердца, а отклонение на 0,3 является опасным для жизни. Нервная система особенно чувствительна к снижению содержания кислорода. Для млекопитающих опасно колебание концентрации ионов кальция, превышающее 30% и т.д.
Иммунологический гомеостаз — поддержание постоянства внутренней среды организма путём сохранения антигенной индивидуальности особи. Под иммунитетом понимают способ защиты организма от живых тел и веществ, несущих на себе признаки генетически чужеродной информации (Петров, 1968).
Чужеродную генетическую информацию несут бактерии, вирусы, простейшие, гельминты, белки, клетки, включая изменённые клетки самого организма. Все перечисленные факторы являются антигенами. Антигены — это вещества, которые при введении в организм способны вызвать образование антител или другую форму иммунного реагирования. Антигены очень разнообразны, чаще ими являются белки, но это бывают и крупные молекулы липополисахаридов, нуклеиновых кислот. Неорганические соединения (соли, кислоты), простые органические соединения (углеводы, аминокислоты) не могут быть антигенами, т.к. не имеют специфичности. Австралийский учёный Ф.Бернет (1961) сформулировал положение, что основное значение иммунной системы состоит в распознавании «своего» и «чужого», т.е. в сохранении постоянства внутренней среды — гомеостаза.
Иммунная система имеет центральное (красный костный мозг, вилочковая железа — тимус) и периферическое (селезёнка, лимфоузлы) звено. Защитная реакция осуществляется лимфоцитами, образующимися в указанных органах. Лимфоциты типа В при встрече с чужеродными антигенами дифференцируются в плазматические клетки, которые выделяют в кровь специфические белки — иммуноглобулины (антитела). Эти антитела, соединяясь с антигеном, обезвреживают их. Такая реакция получила название гуморального иммунитета.
Лимфоциты типа Т обеспечивают клеточный иммунитет, уничтожая чужеродные клетки, например, отторжение трансплантата, и подвергшиеся мутации клетки собственного организма. По расчётам, приведённым Ф.Бернетом (1971), в каждой генетической смене делящихся клеток человека в течение одних суток накапливается около 10 — 6 спонтанных мутаций, т.е. на клеточном и молекулярном уровнях непрерывно происходят процессы, нарушающие гомеостаз. Т-лимфоциты опознают и уничтожают мутантные клетки собственного организма, таким образом обеспечивается функция иммунного надзора.
Иммунная система осуществляет контроль за генетическим постоянством организма. Эта система, состоящая из анатомически разобщённых органов, представляет функциональное единство. Свойство иммунной защиты достигло высшего развития у птиц и млекопитающих.
2. Литература
Основная
1. Пустовалова Л.М. Основы биохимии для медицинских колледжей /Серия «Медицина для вас»./ Л.М.Пустовалова. — Ростов-на-Дону: Феникс, 2005.-448с.
2. Клиническая интерпретация лабораторных исследований/Под ред. А.Б. Белевитина, С.Г. Щербакова. — Санкт-Петербург: ЭЛЬБИ-СПб, 2006.-384 с.
3. Полотнянко Л.И. Клиническая химия: учебное пособие/ Л.И. Полотнянко – М.; ВЛАДОС-ПРЕСС, 2008.-343 с.
Дополнительная
1. Березов Т.Т. Биологическая химия: Учебник для вузов. / Т.Т. Березов Б.Ф.
2. Коровкин — М.: Медицина, 1990. – 528 с.
3. Бышевский А. Ш. Биохимия для врача. / А. Ш. Бышевский, О.А.Терсенов – Екатеринбург: Уральский рабочий, 1994. – 384 с.
4. Клиническая биохимия: учебное пособие. /Под ред.В.А. Ткачука, М.: ГЭОТАР-Медиа, 2008. – 264 с.
5. Комаров Ф.И. Биохимические исследования в клинике. /Ф.И. Комаров, Б.Ф. Коровкин, В.В. Меньшиков – Элиста: АПП Джингар, 1998. – 250 с.
6. Марри Р. Биохимия человека: в 2-х томах. / Р. Марри, Д. Греннер, П. Мейес, В. Родуэлл – М.: Мир, 1993. – 384 с.
3. Интернет- ресурсы
7. http://www.technolink.spb.ru/resheniya-po-avtomatizatsii/resheniya/148/
8. http://www.galen.ru/ru/item/sendvalues/5/
9. http://www.zdrav.ru/articles/79266-rossiyskie-laboratornye-informatsionnye-sistemy
10. http://www.xumuk.ru/biologhim/023.html
4. Глоссарий
Живой организм – открытая система, имеющая связь с окружающей средой посредством нервной, пищеварительной, дыхательной, выделительной систем и др.
Организм – открытая, динамичная система. В условиях непрерывно меняющейся среды организм поддерживает устойчивое состояние в течение определенного времени.
Гомеостаз – свойство живого организма сохранять относительное динамическое постоянство внутренней среды. Гомеостаз выражается в относительном постоянстве химического состава, осмотического давления, устойчивости основных физиологических функций. Гомеостаз специфичен и обусловлен генотипом.
III. Контролирующий блок
1. Вопросы для активизации познавательной деятельности студентов при изучении нового материала
1. Что такое живой организм?
2. Постоянство внутренней среды?
3. Что такое гомеостаз?
4. Роль гомеостаза в жизни организма человека?
2. Вопросы для закрепления и систематизации полученных знаний
1) Определение понятия гомеостаз
2) Виды гомеостаза.
3) Генетический гомеостаз
4) Структурный гомеостаз
5) Гомеостаз внутренней среды организма
6) Иммунологический гомеостаз
Гомеостатические процессы терморегуляции | Изучайте науку в Scitable
Cabanac, M. Регулируемая уставка: в честь Гарольда Т. Хаммела. Журнал прикладной физиологии 100 , 1338–1346 (2006).
Кэннон, Б. и Недергард, Дж. Недрожательный термогенез и его адекватное измерение в метаболических исследованиях. Журнал экспериментальной биологии 214 , 242–253 (2011).
Кэннон, ВБ Мудрость тела . Нью-Йорк, штат Нью-Йорк: WW Norton and Company, 19 лет.32.
Кларк, А. и Пёртнер, Х-О. Температура, метаболическая мощность и эволюция эндотермии. Biological Reviews 85 , 707–727 (2010).
Clusella-Trullas, S. и др. . Тепловые преимущества меланизма у кордилидных ящериц: теоретические и полевые испытания. Экология 90 , 2297–2312 (2009).
Костанцо, Дж. П. и Ли, младший, Р. Е. Загрузка мочевиной повышает выживаемость и восстановление после замораживания у наземно зимующей лягушки. Журнал экспериментальной биологии 211 , 2969–2975 (2008).
Диас М. и Беккер Д. Э. Терморегуляция: физиологические и клинические аспекты седации и общей анестезии. Anesthesia Progress 57 , 25–33 (2010).
Дональдсон, М. Р. и др. . Ограниченная поведенческая терморегуляция взрослых особей нерки, мигрирующих вверх по течению ( Oncorhynchus nerka ) в Нижней реке Фрейзер, Британская Колумбия. Canadian Journal of Zoology 87 , 480–490 (2009).
Дюбуа, Ю. и др. . Терморегуляция и выбор среды обитания у лесных черепах Glyptemys insculpta: Медленная погоня за солнцем. Журнал экологии животных 78 , 1023–1032 (2009).
Эдельман, А. Дж. и Копровски, Дж. Л. Совместное гнездование асоциальных белок Аберта: роль социальной терморегуляции и стратегии размножения. Этология 113 , 147–154 (2007).
Эллис, Д. Дж. и др. . Циркадный ритм поведенческой терморегуляции у сонной ящерицы (Tiliqua rugosa). Herpetologica 62 , 259–265 (2006).
Гиббонс, Дж. Р. Х. и Лиллиуайт, Х. Б. Экологическая сегрегация, сопоставление цветов и видообразование у ящериц комплекса видов Amphibolurus decresii (Lacertilia: Agamidae). Экология 62 , 1573–1584 (1981).
Гринберг, Н. и Крюс, Д. Эндокринные и поведенческие реакции на агрессию и социальное доминирование у зеленой ящерицы анола, Анолис каролинский . Гормональное поведение 18 , 1–11 (1990).
Grigg, G.C. et al. Эволюция эндотермии и ее разнообразие у млекопитающих и птиц. Физиологическая и биохимическая зоология 77 , 982–997 (2004).
Генрих Б. Шмель Экономика . Кембридж, Массачусетс: Издательство Гарвардского университета, 1979.
Хилл, Р. В. и др. . Температура ушной раковины у зайцев во время тренировки, Lepus californicus . Journal of Mammology 61 , 30–38 (1980).
Хьюи, Р. Б. и Кингсолвер, Дж. Г. Эволюция тепловой чувствительности характеристик ectotherm. Тенденции в экологии и эволюции 4 , 131–135 (1989).
Хван, Ю. Т. и др. . Энергетические последствия и экологическое значение гетеротермии и социальной терморегуляции у полосатых скунсов ( Mephitis mephitis ). Физиолого-биохимическая зоология 80 , 138–145 (2007).
Иванов К.П. Развитие концепций гомеотермии и терморегуляции. Journal of Thermal Biology 31 , 24–29 (2006).
Джексон, Ч.Р. и др. . Взгляд на оцепенение и поведенческую терморегуляцию золотого крота Юлианы, находящегося под угрозой исчезновения. Журнал зоологии 278 , 299–307 (2009).
Кирни М. и др. . Потенциал поведенческой терморегуляции для защиты «хладнокровных» животных от потепления климата. Труды Национальной академии наук Соединенных Штатов Америки 106 , 3835–3840 (2009 г.).
Кифер, М. Л. и др. . Поведенческая терморегуляция и связанные с ней компромиссы смертности у мигрирующих взрослых стальных голов ( Onyrhynchus mykiss ): изменчивость среди симпатрических популяций. Canadian Journal of Fisheries and Aquatic Sciences 66 , 1734–1747 (2009).
Kiefer, M.C. и др. . Терморегуляторное поведение в Tropidurus torquatus (Squamata, Tropiduridae) из прибрежных популяций Бразилии: оценка пассивной и активной терморегуляции у ящериц. Acta Zoologica 88 , 81–87 (2007).
Kluger, MJ Fever: Роль пирогенов и криогенов. Physiological Review 71 , 93–127 (1991).
Лемер, Э. М. и др. . Чрезвычайная пластичность в терморегуляторном поведении свободноживущих чернохвостых луговых собачек. Физиолого-биохимическая зоология 79 , 454–467 (2006).
Луттершмидт, Д. И. и др. . Мелатонин и терморегуляция у экзотермических позвоночных: обзор. Canadian Journal of Zoology 81 , 1–13 (2003).
Норфолк, О. и др. . Сравнительное исследование двух агамидных ящериц, Laudakia stellio и Pseudotrapelus sinaitus. Египетский журнал биологии 12 , 27–43 (2010).
Островски С. и др. . Гетеротермия и водное хозяйство свободноживущего аравийского сернобыка ( Oryx leucoryx ). Journal of Experimental Biology 206 , 1471–1478 (2003).
Reiserer, R. S. и др. . Динамические скопления новорожденных гремучих змей-двойников проявляют стабильные терморегуляторные свойства. Журнал зоологии 274 , 277–283 (2008).
Robertshaw, D. Механизмы контроля потери тепла при испарении при дыхании у тяжело дышащих животных. Журнал прикладной физиологии 101 , 664–668 (2006).
Samietz, J. и др. . Высотные различия в поведенческой терморегуляции: локальная адаптация против пластичности у калифорнийских кузнечиков. Журнал эволюционной биологии 18 , 1087–1096 (2005).
Сильва, Дж. Э. Термогенные механизмы и их гормональная регуляция. Physiological Reviews 86 , 435–464 (2006).
Соппела, П. и др. . Терморегуляция северного оленя. Rangifer Специальный выпуск 1 , 273–278 (1986).
Гомеостаз | Биология для специальностей II
Обсудить важность гомеостаза у животных
Органы и системы органов животных постоянно приспосабливаются к внутренним и внешним изменениям посредством процесса, называемого гомеостазом («устойчивое состояние»). Эти изменения могут быть в уровне глюкозы или кальция в крови или во внешней температуре. Гомеостаз означает поддержание динамического равновесия в организме. Он динамичен, потому что постоянно приспосабливается к изменениям, с которыми сталкиваются системы организма. Это равновесие, потому что функции тела удерживаются в определенных пределах. Даже внешне неактивное животное поддерживает это гомеостатическое равновесие.
Цели обучения
- Дать определение гомеостаза
- Опишите факторы, влияющие на гомеостаз
- Опишите процесс терморегуляции
- Опишите терморегуляцию эндотермических и экзотермических животных
Что такое гомеостаз?
Гомеостаз в общем смысле относится к стабильности, равновесию или равновесию. Физиологически это попытка организма поддерживать постоянную и сбалансированную внутреннюю среду, что требует постоянного контроля и корректировки по мере изменения условий. Регулировка физиологических систем в организме называется гомеостатической регуляцией, которая включает три части или механизма:
- приемник
- центр управления
- эффектор
Приемник получает информацию о том, что что-то в окружающей среде меняется. Центр управления или центр интеграции получает и обрабатывает информацию от приемника. Эффектор реагирует на команды центра управления, противодействуя или усиливая стимул. Этот непрерывный процесс постоянно работает для восстановления и поддержания гомеостаза. Например, при регуляции температуры тела температурные рецепторы в коже передают информацию в мозг (центр управления), который сигнализирует эффекторам: кровеносным сосудам и потовым железам в коже. Поскольку внутренняя и внешняя среда тела постоянно меняется, необходимо постоянно вносить коррективы, чтобы оставаться на определенном уровне или близком к нему: уставка .
Целью гомеостаза является поддержание равновесия вокруг определенного значения какого-либо аспекта тела или его клеток, называемого заданным значением. Несмотря на нормальные отклонения от заданной точки, системы организма обычно пытаются вернуться к этой точке. Изменение внутренней или внешней среды называется раздражителем и улавливается рецептором; реакция системы заключается в корректировке действий системы таким образом, чтобы значение возвращалось к заданному значению. Например, если тело становится слишком теплым, вносятся коррективы, чтобы охладить животное. Если уровень глюкозы в крови повышается после еды, вносятся коррективы, чтобы снизить его и доставить питательное вещество в ткани, которые в нем нуждаются, или сохранить его для последующего использования.
Когда в окружающей среде животного происходит изменение, необходимо произвести корректировку, чтобы внутренняя среда тела и клеток оставалась стабильной. Рецептор, воспринимающий изменения в окружающей среде, является частью механизма обратной связи. Стимул — температура, уровень глюкозы или кальция — обнаруживается рецептором. Рецептор посылает информацию в центр управления, часто в мозг, который передает соответствующие сигналы эффекторному органу, способному вызвать соответствующее изменение, либо вверх, либо вниз, в зависимости от информации, которую посылал датчик.
Контроль гомеостаза
Когда в окружающей среде животного происходят изменения, необходимо внести коррективы. Рецептор ощущает изменение в окружающей среде, затем посылает сигнал в центр управления (в большинстве случаев в мозг), который, в свою очередь, генерирует ответ, который передается эффектору. Эффектор представляет собой мышцу (сокращающуюся или расслабляющуюся) или секретирующую железу. Гомеостаз поддерживается петлями отрицательной обратной связи. Петли положительной обратной связи фактически выталкивают организм еще дальше из гомеостаза, но могут быть необходимы для возникновения жизни. Гомеостаз контролируется нервной и эндокринной системой млекопитающих.
Механизмы отрицательной обратной связи
Любой гомеостатический процесс, изменяющий направление стимула, представляет собой петлю отрицательной обратной связи . Он может усиливать или ослаблять стимул, но стимул не может продолжаться так, как это было до того, как рецептор его почувствовал. Другими словами, если уровень слишком высок, тело делает что-то, чтобы понизить его, и наоборот, если уровень слишком низок, тело делает что-то, чтобы поднять его. Отсюда и термин «отрицательная обратная связь». Примером может служить поддержание уровня глюкозы в крови у животных. Когда животное поело, уровень глюкозы в крови повышается. Это ощущается нервной системой. Это чувствуют специализированные клетки поджелудочной железы, и эндокринная система вырабатывает гормон инсулин. Инсулин вызывает снижение уровня глюкозы в крови, как и следовало ожидать в системе с отрицательной обратной связью, как показано на рисунке 1. Однако, если животное не ело и уровень глюкозы в крови снижается, это ощущается другой группой клеток поджелудочной железы, высвобождается гормон глюкагон, вызывающий повышение уровня глюкозы. Это по-прежнему петля отрицательной обратной связи, но не в том направлении, которое ожидается при использовании термина «отрицательный». Другим примером увеличения в результате петли обратной связи является контроль уровня кальция в крови. Если уровень кальция снижается, специализированные клетки паращитовидной железы чувствуют это и высвобождают паратиреоидный гормон (ПТГ), вызывая повышенное всасывание кальция через кишечник и почки и, возможно, разрушение костей для высвобождения кальция. Эффекты ПТГ заключаются в повышении уровня этого элемента в крови. Петли отрицательной обратной связи являются преобладающим механизмом, используемым в гомеостазе.
Рисунок 1. Уровень сахара в крови контролируется петлей отрицательной обратной связи. (кредит: модификация работы Джона Салливана)
Петля положительной обратной связи
Петля положительной обратной связи поддерживает направление стимула, возможно, ускоряя его. В телах животных существует несколько примеров петель положительной обратной связи, но один из них обнаружен в каскаде химических реакций, которые приводят к свертыванию крови или коагуляции. Когда активируется один фактор свертывания крови, он последовательно активирует следующий фактор, пока не образуется фибриновый сгусток. Направление сохраняется, не меняется, так что это положительная обратная связь. Другим примером положительной обратной связи являются сокращения матки во время родов, как показано на рисунке 2. Гормон окситоцин, вырабатываемый эндокринной системой, стимулирует сокращение матки. Это вызывает боль, воспринимаемую нервной системой. Вместо того, чтобы снижать уровень окситоцина и уменьшать боль, вырабатывается больше окситоцина до тех пор, пока схватки не станут достаточно сильными, чтобы вызвать роды.
Рисунок 2. Рождение человеческого младенца является результатом положительной обратной связи.
Практический вопрос
Укажите, регулируется ли каждый из следующих процессов петлей положительной или отрицательной обратной связи.
- Человек чувствует себя сытым после обильной еды.
- В крови много эритроцитов. В результате эритропоэтин, гормон, стимулирующий выработку новых эритроцитов, больше не высвобождается из почек.
Показать ответ
Уставка
Можно настроить уставку системы. Когда это происходит, петля обратной связи поддерживает новую настройку. Примером этого является артериальное давление: со временем нормальное или установленное значение артериального давления может повышаться в результате продолжающегося повышения артериального давления. Тело больше не распознает повышение как ненормальное, и не предпринимается никаких попыток вернуться к более низкому заданному значению. Результатом является поддержание повышенного кровяного давления, которое может иметь вредные последствия для организма. Лекарства могут понизить кровяное давление и понизить контрольную точку в системе до более здорового уровня. Это называется процессом изменение уставки в контуре обратной связи.
Изменения могут быть внесены в группу систем органов тела для поддержания заданного значения в другой системе. Это называется акклиматизация . Это происходит, например, когда животное мигрирует на большую высоту, чем оно привыкло. Чтобы приспособиться к более низким уровням кислорода на новой высоте, организм увеличивает количество эритроцитов, циркулирующих в крови, чтобы обеспечить адекватную доставку кислорода к тканям. Другим примером акклиматизации являются животные, шерсть которых подвержена сезонным изменениям: более толстая шерсть зимой обеспечивает достаточное сохранение тепла, а легкая шерсть летом помогает удерживать температуру тела от повышения до опасного уровня.
Механизмы обратной связи можно понять с точки зрения вождения гоночного автомобиля по трассе: посмотрите короткий видеоурок о петлях положительной и отрицательной обратной связи.
Терморегуляция
Температура тела влияет на активность организма. Как правило, с повышением температуры тела активность ферментов также повышается. При повышении температуры на каждые десять градусов по Цельсию активность ферментов удваивается до определенного предела. Белки организма, в том числе ферменты, начинают денатурировать и терять свои функции при высокой температуре (около 50º C для млекопитающих). Ферментативная активность будет уменьшаться наполовину на каждые десять градусов по Цельсию понижения температуры, вплоть до точки замерзания, за некоторыми исключениями. Некоторые рыбы могут выдерживать замораживание в твердом состоянии и возвращаться к нормальному состоянию при оттаивании.
Посмотрите это видео канала Discovery о терморегуляции, чтобы увидеть иллюстрации этого процесса у различных животных.
Нейронный контроль терморегуляции
Нервная система важна для терморегуляции . Процессы гомеостаза и терморегуляции сосредоточены в гипоталамусе развитого мозга животных.
Практический вопрос
Рисунок 3. Тело способно регулировать температуру в ответ на сигналы нервной системы.
При разрушении бактерий лейкоцитами в кровь выделяются пирогены. Пирогены сбрасывают термостат тела на более высокую температуру, что приводит к лихорадке. Как пирогены могут вызывать повышение температуры тела?
Показать ответ
Гипоталамус поддерживает заданную температуру тела посредством рефлексов, вызывающих расширение сосудов и потоотделение, когда тело слишком теплое, или сужение сосудов и озноб, когда тело слишком холодное. Он реагирует на химические вещества из организма. Когда бактерия уничтожается фагоцитирующими лейкоцитами, в кровь высвобождаются химические вещества, называемые эндогенными пирогенами. Эти пирогены циркулируют в гипоталамусе и перезагружают термостат. Это позволяет температуре тела повышаться до того, что обычно называют лихорадкой. Повышение температуры тела приводит к сохранению железа, что снижает количество питательных веществ, необходимых бактериям. Повышение температуры тела также увеличивает активность ферментов и защитных клеток животного, подавляя ферменты и активность проникающих микроорганизмов. Наконец, само тепло также может убить патоген. Лихорадка, которая когда-то считалась осложнением инфекции, теперь считается нормальным защитным механизмом.
Эндотермы и эктотермы
Животных можно разделить на две группы: одни сохраняют постоянную температуру тела при различных температурах окружающей среды, в то время как у других температура тела такая же, как и у их окружающей среды, и, следовательно, изменяется в зависимости от окружающей среды. Животные, которые не контролируют температуру своего тела, являются экзотермами; вместо этого они полагаются на внешнюю энергию, чтобы определять температуру своего тела. Эту группу называют хладнокровными, но этот термин может не относиться к животным в пустыне с очень теплой температурой тела. Эндотермы — это животные, которые полагаются на внутренние источники температуры тела, но могут проявлять экстремальные температуры. Эти животные способны поддерживать уровень активности при более низкой температуре, чего не может сделать экзотерм из-за разного уровня активности ферментов. Пойкилотермы — это животные с постоянно меняющейся внутренней температурой, а животное, которое поддерживает постоянную температуру тела перед лицом изменений окружающей среды, называется гомойотермом.
Теплообмен между животным и окружающей средой может осуществляться посредством четырех механизмов: излучение, испарение, конвекция и теплопроводность (рис. 4). Радиация – это излучение электромагнитных «тепловых» волн. Таким образом, тепло исходит от солнца и точно так же излучается от сухой кожи. Тепло может отводиться жидкостью от поверхности при испарении. Это происходит, когда млекопитающее потеет. Конвекционные потоки воздуха отводят тепло от поверхности сухой кожи при прохождении над ней воздуха. Тепло будет передаваться от одной поверхности к другой во время прямого контакта с поверхностями, например, когда животное отдыхает на теплом камне.
Рисунок 4. Теплообмен может происходить по четырем механизмам: (а) излучение, (б) испарение, (в) конвекция или (г) теплопроводность. (кредит b: модификация работы «Kullez»/Flickr; кредит c: модификация работы Chad Rosenthal; кредит d: модификация работы «stacey.d»/Flickr)
Сохранение и рассеивание тепла
Животные сохраняют или отводить тепло различными способами. В определенных климатических условиях у эндотермических животных есть какая-то форма изоляции, такая как мех, жир, перья или их комбинация. Животные с густым мехом или перьями создают изолирующий слой воздуха между кожей и внутренними органами. Белые медведи и тюлени живут и плавают в условиях минусовой температуры и при этом поддерживают постоянную теплую температуру тела. Песец, например, использует свой пушистый хвост в качестве дополнительной теплоизоляции, когда ложится спать в холодную погоду. У млекопитающих наблюдается остаточный эффект от дрожи и повышенной мышечной активности: мышцы, приводящие к ворсинкам, вызывают «гусиную кожу», заставляя маленькие волоски вставать дыбом, когда человеку холодно; это имеет предполагаемый эффект повышения температуры тела. Млекопитающие используют слои жира для достижения той же цели. Потеря значительного количества жира в организме ставит под угрозу способность человека сохранять тепло.
Эндотермы используют свою систему кровообращения для поддержания температуры тела. Вазодилатация приносит больше крови и тепла к поверхности тела, способствуя излучению и потере тепла за счет испарения, что способствует охлаждению тела. Вазоконстрикция уменьшает кровоток в периферических кровеносных сосудах, направляя кровь к центру и находящимся там жизненно важным органам и сохраняя тепло. У некоторых животных есть приспособления к системе кровообращения, которые позволяют им передавать тепло от артерий к венам, согревая кровь, возвращающуюся к сердцу. Это называется противоточным теплообменом; препятствует охлаждению сердца и других внутренних органов холодной венозной кровью. Эта адаптация может быть отключена у некоторых животных, чтобы предотвратить перегрев внутренних органов. Противоточная адаптация встречается у многих животных, включая дельфинов, акул, костистых рыб, пчел и колибри. Напротив, аналогичные приспособления могут при необходимости помочь охладить эндотермы, например, трематоды дельфинов и уши слона.
Некоторые экзотермические животные используют изменения в своем поведении, чтобы регулировать температуру тела. Например, пустынное экзотермическое животное может просто искать более прохладные места в самое жаркое время дня в пустыне, чтобы не перегреться. Одни и те же животные могут забираться на скалы, чтобы согреться холодной ночью в пустыне. Некоторые животные ищут воду, чтобы способствовать испарению и охлаждению, как это видно на примере рептилий. Другие экзотермы используют групповую деятельность, такую как активность пчел, чтобы согреть улей, чтобы пережить зиму.
Многие животные, особенно млекопитающие, используют отработанное метаболическое тепло в качестве источника тепла. Когда мышцы сокращаются, большая часть энергии АТФ, используемой в мышечных движениях, тратится впустую и превращается в тепло. Сильный холод вызывает рефлекс дрожи, который выделяет тепло для тела.