Гомеостаз человека: Гомеостаз при физических нагрузках

Роль почек в гомеостазе глюкозы

Поддержание гомеостаза глюкозы требует сложного взаимодействия ряда органов и систем организма: слаженной работы печени, поджелудочной железы, мышечной и жировой ткани, нейроэндокринной системы [1], что в физиологических условиях обеспечивает низкую вариабельность гликемии в течение суток [2]. Уровень глюкозы в крови у здорового человека колеблется от 3,0 ммоль/л после физических нагрузок [3] до 9,9 ммоль/л в период пищеварения [4].

Настоящий обзор обобщает результаты отечественных и зарубежных клинических и экспериментальных исследований, посвященных участию почек в поддержании гомеостаза глюкозы в организме человека и имеющихся в базах данных www.elibrary.ru, www.ncbi.nlm.nih.gov/pubmed, www.clinicalTrials.gov, поисковой системе Google Scholar. Поиск проводился по ключевым словам: почки, гомеостаз глюкозы, сахарный диабет 2-го типа (СД2), ингибитор натрий-глюкозного котранспортера 2-го типа.

Концентрация глюкозы в плазме зависит от скорости поступления молекул глюкозы в кровоток и ее утилизации тканями-мишенями.

Эти процессы находятся под строгим гормональным контролем [2]. Такие гормоны, как инсулин, глюкагон и катехоламины могут изменять уровень глюкозы в плазме натощак в течение нескольких минут. Инсулин подавляет высвобождение глюкозы в кровоток путем активации/инактивации ферментов [5]. Так, инсулин тормозит глюконеогенез, протекающий в печени и почках, снижая доступность субстратов этого процесса, а также подавляя синтез его ключевых ферментов — фосфоенолпируваткарбоксикиназы, фруктозо-1,6-бисфосфатазы [5, 6]. В то же время инсулин активирует гликогенсинтазу, в результате чего увеличивается биосинтез и депонирование гликогена (гликогенез) в печени и мышцах. Инсулин стимулирует синтез ферментов гликолиза, что ускоряет процесс распада молекул глюкозы с образованием АТФ [6]. Глюкагон не оказывает воздействия на почки, но увеличивает глюконеогенез и гликогенолиз в печени [7]. Катехоламины стимулируют синтез глюкозы почками, снижают поглощение глюкозы тканями, ингибируют секрецию инсулина, а также стимулируют секрецию глюкагона [8].

Большое значение в обмене углеводов играют соматотропный гормон (СТГ, гормон роста) и кортизол. Гормон роста ускоряет глюконеогенез в печени, тормозя в то же время поглощение глюкозы тканями [9]. Кортизол повышает уровень глюкозы в крови благодаря стимуляции биосинтеза ключевых ферментов глюконеогенеза, увеличению пула свободных аминокислот, являющихся субстратами глюконеогенеза. Кроме того, кортизол ускоряет гликогенез в печени и тормозит потребление глюкозы периферическими тканями [10]. Таким образом, ключевым органом, реализующим эффекты гормонов, является печень. Процессы распада, синтеза и запасания молекул глюкозы гепатоцитами обеспечивают гомеостаз глюкозы в крови [11].

До недавнего времени почки не рассматривались в качестве органа, играющего важную роль в регуляции уровня глюкозы крови. Основная функция почек в гомеостазе глюкозы отводилась регуляции метаболизма молекул инсулина. Известно, что почки инактивируют 30—40% молекул инсулина, что составляет 6—8 ЕД/сут [12].

Клиренс инсулина почками осуществляется с помощью двух основных механизмов. Первый включает клубочковую фильтрацию молекул инсулина с последующей реабсорбцией их из просвета проксимального отдела нефрона внутрь эпителиоцита. Данный процесс протекает посредством эндоцитоза [13]. Второй механизм не связан с клубочковой фильтрацией. Он включает диффузию молекул инсулина из просвета перитубулярных капилляров, связывание их с базолатеральной мембраной и поступление в эпителиальные клетки. Внутри эпителиоцитов молекулы инсулина подвергаются деградации с помощью лизосомальных ферментов, инсулиновой протеазы и глютатионинсулинтрансгидрогеназы [12]. Нарушение функции почек увеличивает период полураспада инсулина, поэтому при почечной недостаточность потребность в инсулине у больных сахарным диабетом (СД) снижается [13].

Накопленные в последние годы данные позволяют сделать вывод о том, что почки не только участвуют в деградации молекул инсулина, но и, наряду с печенью, участвуют в обеспечении энергетических потребностей организма [1]. В почках в процессе глюконеогенеза происходит синтез молекул глюкозы, а также поглощение молекул глюкозы из крови для обеспечения энергетических потребностей самой почечной ткани; однако наиболее важная функция почек в гомеостазе глюкозы заключается в реабсорбции молекул глюкозы из клубочкового ультрафильтрата [8].

Особенностью глюконеогенеза в почках является его зависимость от времени, прошедшего после приема пищи. Выделяют постабсорбтивный и постпрандиальный периоды.

Продукция глюкозы в кровь в постабсорбтивный период (через 14—16 ч после приема пищи) составляет около 10 мкмоль⁄(кг·мин) [14—16] и является результатом гликогенолиза и глюконеогенеза. Гликогенолиз — процесс распада гликогена до глюкозо-6-фосфата. Наибольшее количество гликогена в организме содержится в печени и скелетных мышцах [9]. Однако только в печени содержится фермент глюкозо-6-фосфатаза, способный приводить к высвобождению молекул глюкозы в кровь. Глюкозо-6-фосфат, образующийся в результате распада гликогена в мышечной ткани, используется для получения энергии внутри миоцитов [6]. Гликогенолиз, протекающий в печени, обеспечивает до 50% молекул глюкозы, высвобождающихся в кровеносное русло в постабсорбтивный период. Остальные 50% являются продуктом производства глюкозы de novo из предшественников (лактата, глицерина, аланина и других аминокислот) с помощью активации глюконеогенеза в печени и почках [14, 15]. В отличие от печени почки не способны продуцировать глюкозу путем гликогенолиза [15]. Однако, как и печень, они способны к глюконеогенезу. Исследования последних 15—20 лет показали, что в постабсорбтивный период печень и почки посредством глюконеогенеза обеспечивают синтез равных количеств молекул глюкозы. При этом 75—80% глюкозы высвобождается в кровь из печени благодаря гликогенолизу и глюконеогенезу, оставшиеся 20—25% синтезируются в почках с помощью глюконеогенеза. По мере увеличения продолжительности голодания запасы гликогена в печени истощаются, и через 48 ч после приема пищи около 90% глюкозы, выделяющейся в кровь, синтезируется посредством глюконеогенеза [3, 14].

Важно отметить, что почки и печень отличаются источниками глюконеогенеза. Лактат является основным субстратом глюконеогенеза в обоих органах. В отсутствии данного вещества почки преимущественно используют глутаминовую кислоту [17], тогда как печень преимущественно утилизирует аланин [18]. Общие данные по продукции глюкозы печенью и почками в постабсорбтивный период отражены в табл. 1 [19]. Таблица 1. Продукция глюкозы в постабсорбтивный период

Классические исследования обмена веществ, как правило, проводятся в постабсорбтивный период. Однако большую часть дня организм человека находится в постпрандиальном периоде, т. е. в течение 4—6 ч после приема пищи (при 3-разовом питании) [8]. В связи с этим особую актуальность представляет роль печени и почек в гомеостазе глюкозы между приемами пищи. C. Meyer и cоавт. [20] продемонстрировали, что в постпрандиальный период общая продукция глюкозы в организме снижается на 61%. В течение 4—6 ч после приема пищи скорость гликогенолиза в печени приближается к нулю [20].

В этот период происходит в основном пополнение запасов гликогена в печени. Подавление эндогенной продукции глюкозы предотвращает развитие гипергликемии в постпрандиальный период. На 82% снижается и глюконеогенез в печени. Синтезированные молекулы глюкозы не поступают в кровь, а используются для образования гликогена. В то же время скорость глюконеогенеза в почках увеличивается в два раза, обеспечивая около 60% общей эндогенной продукции глюкозы в постпрандиальный период [20].

Приведенные данные, а также исследование S. Joseph и соавт. [21], показавшее, что через 1 ч после удаления печени эндогенная продукция глюкозы снижается приблизительно на 50%, позволили разработать концепцию реципрокного взаимодействия печени и почек [19, 21]. Это означает, что при физиологическом или патологическом уменьшении высвобождения глюкозы почками или печенью компенсаторно увеличивается продукция глюкозы другим органом [19].

Почки способны не только синтезировать молекулы глюкозы, но и поглощать их для обеспечения собственных энергетических процессов [22], что связано с разнонаправленным механизмом использования глюкозы в корковом и мозговом веществе почек [15].

Глюконеогенез протекает в корковом веществе, тогда как в слабоваскуляризированном мозговом веществе протекает гликолиз, сопровождающийся распадом молекул глюкозы [23]. В постабсорбтивный период почки утилизируют около 10% общего количества глюкозы [20].

Почки также могут влиять на гомеостаз глюкозы путем реабсорбции ее из клубочкового ультрафильтрата в общий кровоток [8]. При скорости клубочковой фильтрации около 180 л/сут и средней концентрации глюкозы в плазме 5,5 ммоль/л почки ежедневно реабсорбируют около 180 г глюкозы [24]. Когда уровень глюкозы в плазме крови превышает максимальный реабсорбтивный потенциал транспортной системы почек, возникает глюкозурия [1].

Реабсорбция глюкозы из клубочкового фильтрата происходит в проксимальных извитых канальцах с помощью натрий-глюкозных ко-транспортеров (SGLT) [24], среди которых наибольшее значение имеют SGLT1 и SGLT2. Характеристика SGLT представлена в табл. 2 [8]. Таблица 2. Семейство SGLT

SGLT2 обладает низкой аффинностью, но высокой способностью к транспорту глюкозы. Он функционирует в S1- и S2-сегментах извитого проксимального канальца [1, 8, 25, 26], и с его помощью реабсорбируется до 90% молекул глюкозы по электрохимическому градиенту [1, 24, 25]. Остальные 10% реабсорбируется с помощью SGLT1, обладающего высокой аффинностью и низкой способностью к транспорту молекул глюкозы. Данный переносчик расположен в S3-сегменте проксимального канальца [24, 26]. SGLT1 участвует также в реабсорбции глюкозы и галактозы в кишечнике [24]. Общая схема фильтрации и реабсорбции молекул глюкозы почками изображена на рисунке Механизм фильтрации и реабсорбции глюкозы в проксимальном канальце. [27, 28].

Транспорт глюкозы из просвета проксимального почечного канальца в кровеносное русло протекает в несколько этапов [28, 29]. Первый этап — процесс переноса глюкозы из просвета почечного канальца через щеточную каемку в эпителиальную клетку — осуществляется с помощью SGLT1 и SGLT2 против градиента концентрации с затратой энергии. Соотношение молекул глюкозы и натрия составляет 1:1 для SGLT2 и 1:2 для SGLT1 [30]. Низкую внутриклеточную концентрацию Na поддерживает расположенная на базолатеральной мембране клетки Na-K-АТФаза, которая способствует выделению Na из эпителиоцита в просвет сосуда. Электрохимический градиент обеспечивает движущую силу для постоянного транспорта Na в клетку через апикальную мембрану, что позволяет одновременно переносить глюкозу с помощью SGLT [24]. При повышении уровня глюкозы в эпителиальной клетке молекулы глюкозы диффундируют из интерстиция с помощью специальных переносчиков (GLUT), расположенных в базолатеральной мембране [26]. Данный процесс протекает без затрат энергии посредством пассивного транспорта. Таким образом, нормальное функционирование специальных переносчиков позволяет почкам реабсорбировать практически все молекулы глюкозы из проксимального отдела почечного канальца с помощью инсулиннезависимого процесса.

При дисфункции проксимальных почечных канальцев возникает глюкозурия, которая сопровождается выделением с мочой аминокислот, фосфатов, бикарбонатов и других веществ. Данное состояние называют синдромом де Тони—Дебре—Фанкони. Наличие глюкозурии в отсутствии генерализованной проксимальной канальцевой дисфункции и гипергликемии называют семейной почечной глюкозурией (СПГ) [31]. Выделяют три типа СПГ, которые развиваются вследствие мутаций в гене SLC5A2, кодирующем SGLT2 [31, 32]. В зависимости от характера мутации в данном гене степень глюкозурии варьирует [32]. Тип, А характеризуется низким почечным порогом для глюкозы и низкой максимальной канальцевой реабсорбцией глюкозы. Тип В отличается нормальной максимальной канальцевой реабсорбцией глюкозы при низком почечном пороге для глюкозы [32]. Наиболее тяжелая форма болезни, при которой полностью отсутствует реабсорбция глюкозы, называется СПГ, тип 0 [32]. В литературе описано небольшое количество пациентов с СПГ [8]. Как правило, СПГ не приводит к гипогликемическим состояниям, обезвоживанию, электролитному дисбалансу или повышенному риску инфекции мочевыводящих путей [32]. Интересно, что даже самая тяжелая форма заболевания протекает доброкачественно [33]. В то же время мутации в гене SGLT1 приводят к незначительной глюкозурии, но вызывают выраженную мальабсорбцию глюкозы и галактозы. Данное состояние может сопровождаться жизнеугрожающей диареей и обезвоживанием [34].

Особый интерес представляет механизм реабсорбции глюкозы с помощью SGLT2 у больных СД2. Показано, что клетки проксимальных извитых канальцев у пациентов с СД2 содержат значительно большее количество SGLT2, чем у пациентов с нормальной толерантностью к глюкозе, что приводит к увеличению реабсорбции глюкозы в три раза по сравнению с контрольной группой [35]. Эти данные привели к разработке новой группы сахароснижающих препаратов — ингибиторов SGLT. Первым соединением, способным блокировать работу SGLT2 и SGLT1, оказался флоризин. Данное вещество выделено из коры яблони [36]. Введение флоризина крысам с удаленной поджелудочной железой приводило к увеличению глюкозурии, снижению гипергликемии и нормализации чувствительности к инсулину [37]. Однако флоризин не нашел применения в лечении СД2 из-за неселективности действия. Ингибирование SGLT1, расположенного в щеточной кайме кишечника, приводит к глюкозогалактозной мальабсорбции [38]. Дальнейшее усовершенствование химической структуры флоризина привело к созданию новой группы лекарственных средств, способных селективно ингибировать SGLT2.

Снижение реабсорбции глюкозы почками с помощью ингибиторов SGLT2 представляет собой уникальный инсулиннезависимый подход к лечению СД2. Данная группа сахароснижающих средств имеет ряд преимуществ по сравнению с другими препаратами. Так, действие ингибиторов SGLT2 не зависит от функции β-клеток поджелудочной железы, вследствие чего препараты этой группы могут назначаться независимо от длительности СД и степени утраты функции β-клеток. На фоне применения ингибиторов SGLT2 гипогликемические состояния практически не развиваются. Кроме того, глюкозурия, вызванная приемом лекарственных препаратов, приводит к снижению веса, что особенно актуально у больных СД2. Ингибиторы SGLT2 обладают диуретическим действием, что является дополнительным преимуществом у пациентов с артериальной гипертензией. На фоне приема таких препаратов возможно развитие электролитных нарушений, инфекций мочевыводящих путей, половых инфекций [8]. Однако доказано, что ингибиторы SGLT2 лишены тяжелых побочных эффектов [39]. Результаты последних клинических исследований продемонстрировали сердечно-сосудистую безопасность ингибиторов SGLT2 [40, 41]. Особое значение имеет исследование EMPA-REG OUTCOME, которое доказало, что прием ингибитора SGLT2 эмпаглифлозина приводит к снижению числа случаев госпитализаций по поводу сердечной недостаточности на 35%, сердечно-сосудистой смертности на 38%, а также общей смертности на 32% по сравнению с приемом плацебо [41]. Полученные результаты указывают на целесообразность более широкого применения данной группы препаратов у больных СД2, особенно при наличии сердечно-сосудистых заболеваний.

Накопленные к настоящему времени данные позволяют сделать вывод о том, что почки оказывают сложное, многокомпонентное воздействие на уровень глюкозы крови. Открытие важной роли почек в гомеостазе глюкозы привело к изучению новых звеньев патогенеза СД2, созданию перспективного подхода в его лечении – применению ингибиторов SGLT2.

Дополнительная информация

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи, о которых необходимо сообщить.

Сведения об авторах

Маркова Татьяна Николаевна, д.м.н. [Tatyana N. Markova, MD]; адрес: Россия, 123182, Москва, ул. Пехотная, д. 3 [address: 3 Pehotnaja street, 123182 Moscow, Russia]; ORCID: http://orcid.org/0000-0002-8798-887X; eLibrary SPIN: 5914-2890; e-mail: [email protected]

Мкртумян Ашот Мусаелович, д.м.н., проф. [Ashot M. Mkrtumyan, MD, Professor]; ORCID: http://orcid.org/0000-0003-1316-5245;

eLibrary SPIN: 1980-8700; e-mail: [email protected]

Мищенко Надежда Константиновна [Nadezhda K. Mishchenko]; ORCID: http://orcid.org/0000-0001-8270-5626; eLibrary SPIN: 1975-9680; e-mail: [email protected]

Анатомия и физиология гомеостаза. Учебное пособие

885 ₽

+ до 132 бонусов

Купить

Цена на сайте может отличаться от цены в магазинах сети. Внешний вид книги может отличаться от изображения на сайте.

Последний экземпляр

1

Цена на сайте может отличаться от цены в магазинах сети. Внешний вид книги может отличаться от изображения на сайте.

В учебном пособии представлена структурная и функциональная организация деятельности ведущих систем организма человека и животных: обмен веществ и энергии, пищеварение, дыхание, кровообращение, выделение, терморегуляция, железы внутренней и внешней секреции, нервная система, обеспечивающая гомеостаз — постоянство внутренней среды организма. Особенностью книги является обсуждение материала с позиции адаптации (приспособление организма к постоянно изменяющимся условиям внешней и внутренней среды). Книга предназначена для студентов, медиков, психологов, биологов и экологов, обучающихся в высших учебных заведениях.

Описание

Характеристики

В учебном пособии представлена структурная и функциональная организация деятельности ведущих систем организма человека и животных: обмен веществ и энергии, пищеварение, дыхание, кровообращение, выделение, терморегуляция, железы внутренней и внешней секреции, нервная система, обеспечивающая гомеостаз — постоянство внутренней среды организма. Особенностью книги является обсуждение материала с позиции адаптации (приспособление организма к постоянно изменяющимся условиям внешней и внутренней среды). Книга предназначена для студентов, медиков, психологов, биологов и экологов, обучающихся в высших учебных заведениях.

Инфра-М

На товар пока нет отзывов

Поделитесь своим мнением раньше всех

Как получить бонусы за отзыв о товаре

1

Сделайте заказ в интернет-магазине

2

Напишите развёрнутый отзыв от 300 символов только на то, что вы купили

3

Дождитесь, пока отзыв опубликуют.

Если он окажется среди первых десяти, вы получите 30 бонусов на Карту Любимого Покупателя. Можно писать неограниченное количество отзывов к разным покупкам – мы начислим бонусы за каждый, опубликованный в первой десятке.

Правила начисления бонусов

Если он окажется среди первых десяти, вы получите 30 бонусов на Карту Любимого Покупателя. Можно писать неограниченное количество отзывов к разным покупкам – мы начислим бонусы за каждый, опубликованный в первой десятке.

Правила начисления бонусов

Книга «Анатомия и физиология гомеостаза. Учебное пособие» есть в наличии в интернет-магазине «Читай-город» по привлекательной цене. Если вы находитесь в Москве, Санкт-Петербурге, Нижнем Новгороде, Казани, Екатеринбурге, Ростове-на-Дону или любом другом регионе России, вы можете оформить заказ на книгу «Анатомия и физиология гомеостаза. Учебное пособие» и выбрать удобный способ его получения: самовывоз, доставка курьером или отправка почтой. Чтобы покупать книги вам было ещё приятнее, мы регулярно проводим акции и конкурсы.

Биоэлектричество | Сигнализация клеток, нервные импульсы и мышечные сокращения

Ключевые люди:
Луиджи Гальвани Эмиль Генрих Дюбуа-Реймон
Связанные темы:
гиперполяризация деполяризация биоэлектрический потенциал реполяризация биоэлектрический ток

См. весь связанный контент →

биоэлектричество , электрические потенциалы и токи, создаваемые живыми организмами или происходящие внутри них. Биоэлектрические потенциалы генерируются различными биологическими процессами и обычно имеют силу от одного до нескольких сотен милливольт. Однако у электрического угря генерируются токи в один ампер при напряжении от 600 до 1000 вольт. Далее следует краткое рассмотрение биоэлектричества. Для полного лечения см. электричество: Биоэлектрические эффекты.

Биоэлектрические эффекты были известны еще в древности по активности таких электрических рыб, как нильский сом и электрический угорь. Опыты Луиджи Гальвани и Алессандро Вольта в 18 веке по связи между электричеством и сокращением мышц у лягушек и других животных имели важное значение в развитии наук физики и физиологии. В наше время измерение биоэлектрических потенциалов стало рутинной практикой в ​​клинической медицине. Например, электрические эффекты, происходящие в активных клетках сердца и мозга, обычно отслеживаются и анализируются в диагностических целях.

Викторина по Британике

Биология Бонанза

Биоэлектрические потенциалы идентичны потенциалам, создаваемым такими устройствами, как батареи или генераторы. Однако почти во всех случаях биоэлектрический ток состоит из потока ионов (, т. е. электрически заряженных атомов или молекул), тогда как электрический ток, используемый для освещения, связи или питания, представляет собой движение электронов. Если два раствора с разной концентрацией иона разделены мембраной, которая блокирует поток ионов между ними, дисбаланс концентраций приводит к возникновению разности электрических потенциалов между растворами. В большинстве растворов ионы данного электрического заряда сопровождаются ионами противоположного заряда, так что сам раствор не имеет суммарного заряда. Если два раствора с различной концентрацией разделены мембраной, которая пропускает один тип ионов, но не пропускает другой, то концентрации ионов, которые могут пройти, будут иметь тенденцию к выравниванию за счет диффузии, создавая одинаковые и противоположные суммарные заряды в двух растворах. В живых клетках два решения находятся внутри и вне клетки. Клеточная мембрана, отделяющая внутреннюю часть от внешней, полупроницаема, пропуская одни ионы и блокируя другие. В частности, мембраны нервных и мышечных клеток слабо проницаемы для положительных ионов калия, которые диффундируют наружу, оставляя в клетке суммарный отрицательный заряд.

Биоэлектрический потенциал клеточной мембраны обычно составляет около 50 милливольт; этот потенциал известен как потенциал покоя. Все клетки используют свои биоэлектрические потенциалы для поддержки или контроля метаболических процессов, но некоторые клетки специально используют биоэлектрические потенциалы и токи для определенных физиологических функций. Примеры такого использования можно найти в нервных и мышечных клетках. Информация переносится электрическими импульсами (называемыми потенциалами действия), проходящими по нервным волокнам. Подобные импульсы в мышечных клетках сопровождают мышечное сокращение. В нервных и мышечных клетках химическая или электрохимическая стимуляция приводит к временным изменениям проницаемости клеточных мембран, позволяя электрическому потенциалу между внутренней и внешней частью разряжаться в виде тока, который распространяется по нервным волокнам или активирует сократительный механизм мышечных волокон. Транспорт ионов натрия участвует в производстве потенциалов действия. К другим клеткам, специализированные функции которых зависят от поддержания биоэлектрических потенциалов, относятся рецепторные клетки, чувствительные к свету, звуку и прикосновению, а также многие клетки, секретирующие гормоны или другие вещества.

Различные рыбы, как морские, так и пресноводные, имеют специальные органы, способные генерировать сильные электрические разряды, в то время как другие имеют ткани, способные ощущать слабые электрические поля в воде. У более чем 200 видов рыб биоэлектрический орган участвует в самообороне или охоте. Торпеда, или электрический скат, и электрический угорь имеют особенно мощные электрические органы, которые они, по-видимому, используют для обездвиживания или убийства добычи. Электрический угорь имеет три пары электрических органов; они составляют большую часть массы тела и около четырех пятых общей длины рыбы. Считается, что эта рыба способна генерировать достаточно мощный электрический разряд, чтобы оглушить человека. Электрические скаты имеют два больших дисковидных электрических органа, по одному с каждой стороны тела, которые вносят свой вклад в дискообразную форму тела.

Электрический сом Африки, ножевая рыба Латинской Америки и звездочеты, вероятно, используют свои биоэлектрические органы в качестве органов чувств при обнаружении других рыб.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.

Подписаться

Основным элементом биоэлектрического органа является уплощенная клетка, называемая электробляшкой. Большое количество электропластинок располагают последовательно и параллельно для наращивания напряжения и токопроизводящей способности электрического органа. Рыбы производят внезапный разряд электричества, синхронизируя нервные импульсы, которые активируют отдельные электробляшки, тем самым обеспечивая одновременное действие всего массива.

Гипоталамус: термостат тела | Спросите у биолога

показать/скрыть слова, чтобы знать

Надпочечник: две железы, участвующие в реакции организма на стресс. Эти железы расположены над почками.

Эндокринная система: совокупность органов и желез, которые помогают контролировать работу организма, регулируя количество и тип гормонов в организме… подробнее

Железа: орган, выделяющий материалы для использования в определенные места на теле или снаружи тела… подробнее

Гомеостаз: способность поддерживать систему в постоянном состоянии.

Гормон: химическое сообщение, высвобождаемое клетками в организме, которое влияет на другие клетки в организме.

Гипоталамус: часть мозга, которая контролирует такие вещи, как жажда, голод, температура тела и выброс многих гормонов.

Мозг

У всех людей и многих животных есть гипоталамус, расположенный в середине мозга.

Пот имеет плохую репутацию, хотя он играет важную роль в охлаждении нашего тела, когда нам становится слишком жарко. Но как именно ваше тело узнает, когда начать потеть? Он знает, потому что часть вашего мозга, называемая гипоталамусом, сообщает ему об этом. Все люди и многие животные имеют гипоталамус.

Гипоталамус выполняет множество функций, но две из его наиболее важных функций — поддержание гомеостаза и контроль определенных гормонов. Гомеостаз очень важен для всех животных, включая человека. Если мы посмотрим на слово, то увидим, что гомео означает «то же самое», а stasis означает «неподвижный», или «удерживающий». Итак, гомеостаз означает, что что-то удерживается в одном и том же месте.

Давайте подумаем о гомеостазе с точки зрения температуры тела. Большинство животных поддерживают или удерживают свою температуру на определенном уровне. Для человека это около 98,6°F (37°C). Когда ваш гипоталамус чувствует, что вам слишком жарко, он посылает сигналы вашим потовым железам, чтобы вы потели и охладились. Когда гипоталамус чувствует, что вам слишком холодно, он посылает сигналы вашим мышцам, которые заставляют вас дрожать и создают тепло. Это называется поддержанием гомеостаза. Гипоталамус также поддерживает гомеостаз многими другими способами, например, контролируя кровяное давление.

Температура вашего тела, как и температура в вашем доме, представляет собой баланс между различными системами охлаждения и обогрева.

Гипоталамус также контролирует многие гормоны. Он делает это, являясь своего рода привратником для других желез, выделяющих гормоны. Когда ваш гипоталамус почувствует изменение в вашем теле, он скажет правой железе, как помочь исправить это изменение.

Например, если у вас слишком много домашней работы и вы испытываете стресс, гипоталамус посылает сигнал вашим надпочечникам, и они выделяют гормоны, которые помогают вашему телу справиться со стрессом. Что касается реакции на стресс, это приведет к высвобождению сахаров, которые помогут вам справиться с домашним заданием. Гипоталамус также участвует в высвобождении многих других гормонов, которые контролируют все, от вашего кровяного давления до того, насколько вы растете в молодости. Это делает гипоталамус основным связующим звеном между мозгом и вашей гормональной или эндокринной системой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *