Уравнение регрессии — Энциклопедия по экономике
Частный коэффициент эластичности показывает, на сколько процентов в среднем изменяется производительность труда при изменении данного фактора на 1%. Для полученного уравнения регрессии коэффициенты эластичности соответственно равны Э2=+4,25 Э3=+0,38 34 = —5,69 Э5=+0,43. [c.201]Многофакторная корреляционная модель дает возможность не только выразить количественно влияние факторов на изучаемый показатель, но и предсказать значение функции и, следовательно, управлять анализируемым показателем. Результаты такого анализа предназначены для разработки плановых заданий. Использование этого метода предполагает предварительное установление формы связи показателей и формирующих их факторов, расчет показателей достоверности, а также пределов, в которых может быть использовано уравнение регрессии. [c.102]
Таблица 5.2. Коэффициент корреляции и уравнения регрессии для физико-механических показателей резиновых смесей и готовых протекторов |
Вычисление парных коэффициентов корреляции между исследуемыми факторами, построение уравнения регрессии, проверка его надежности по критериям Фишера и Стьюдента, исключение из исходной матрицы ненадежных факторов. [c.34]
Вычисление коэффициентов эластичности для уравнения регрессии в линейной форме. [c.34]
Уравнение регрессии для объединения Татнефть получило следующий вид [c.25]
Ниже представлены пять вариантов расчета уравнений регрессия по объединению Татнефть с шестью, пятью, четырьмя, тремя и двумя факториальными признаками, выполненных на ЭВМ Минск-22 (табл. 2). [c.25]
Следует отметить, что факторы, выделенные при анализе себестоимости в качестве основных и учтенные при решении уравнения регрессии, не являются самостоятельными и независящими друг от друга. Известно, что на объем добычи нефти из скважины (дебит) влияет количество добываемой с нефтью воды и объем нагнетаемого в пласт агента для поддержания пластового давления. Кроме того, с падением дебитов скважины переводятся на механизированный способ эксплуатации, растет стоимость основных фондов и численность работников.
Существует также зависимость между обводненностью нефти и объемом воды, закачанной в пласт, между стоимостью основных производственных фондов и численностью промышленно-производственного персонала и т. д. [c.26]Для этого отыскивались уравнения регрессии для линейной, гиперболической и параболической второго порядка форм связи(подробнее вопрос о форме связи изложен ниже). При этом использовались расчеты парных корреляционно-регрессионных зависимостей между суточной загрузкой оборудования и расходом в отдельности топлива, воды, электроэнергии и пара, приходящиеся на единицу целевой продукции. [c.99]
На основании данных табл. 4.2, 4.3, 4.4 зависимости, представленные в структуре интегрального показателя уровня качества, переведены в форму уравнений регрессии [c.94]
Наилучшие результаты дает регрессионный анализ. Сопоставляя результаты решений уравнений регрессии конкретных [c.148]
Наилучшие результаты дает регрессионный анализ. Сопоставляя результаты решений уравнений регрессии конкретных предприятий со средними данными и показателями передовых предприятий, можно с достаточной точностью определить причины различий, включая и несопоставимые на первый взгляд, факторы. [c.150]
Математически задача анализа производительности труда формулируется следующим образом требуется найти аналитическое выражение зависимости производительности труда от определяющих ее факторов-аргументов, т. е. найти функцию y = f(x). При этом под факторами-аргументами или просто факторами будем понимать все независимые переменные уравнения регрессии (х , х2,. .., хп). [c.63]
Полученные уравнения регрессии имеют следующий вид [c.83]
Уы — среднее значение расчетной производительности труда, определенное по формулам (20) — (23). Если полученные значения -критерия больше его соответствующих табличных значений (Р>Р ), это свидетельствует о том, что полученные уравнения регрессии учитывают влияние основных факторов, определяющих уровень производительности [c.84]
Существенность включенных в уравнения регрессии (20) — (22) факторов оценена по коэффициенту множественной корреляции R и путем проверки по /-критерию Стьюдента. [c.86]
Для выявления существенности факторов х,- в уравнениях (20) — (22) были рассчитаны значения -критерия Стьюдента для всех коэффициентов уравнения регрессии, которые затем были сопоставлены с табличными значениями.
Характер корреляционных зависимостей определяется уравнениями регрессии, показывающими закон изменения изучаемого показателя при изменении аргумента. Достоверность расчетов в корреляционном анализе зависит от количества наблюдений, от так называемого объема выборки. Увеличение объема выборки повышает надежность результатов корреляционного анализа. [c.396]
Окончательный выбор аппроксимирующей кривой между уравнением регрессии, полученным на основе динамического ряда предложений ВНИИОЭНГ, и уравнением регрессии, полученным на основе динамического ряда фактических удельных расходов, по каждому материалу осуществлялся на основе сопоставления полученной величины прогноза с показателями, 1979 г. [c.25]
Так, например, по обсадным и бурильным трубам была взята база исходных данных за 1 967-1 97 9 гг. , в основном динамические ряды фактических удельных расходов. В табл.1 для них приведены уравнения регрессии, результаты сопоставления прогнозов норм расхода с предложениями ВНИИОЭНГ)Г разработанными на основе расчетно— аналитического метода, и утвержденная норма. Сопоставление осуществлялось с учетом определения относительного отклонения между ними по формуле [c.25]
Для насосно— компрессорных труб в качестве базы исходных данных были взяты в основном предложения ВНИИОЭНГ по нормам расхода за 1971-1980 гг. В табл. 2 для них также приведены уравнения регрессии и результаты сопоставления прогнозов и предложений ВНИИОЭНГ по нормам расхода. Из этой таблицы видно, что наиболее значительные расхождения между прогнозом и предложениями имеются для таких направлений расхода, как оборудование скважин, вводимых из бездействия — фонтанных и компрессорных, а также насосных. [c.25]
Это эквивалентно определению коэффициентов линейного уравнения регрессии для новых переменных [c.28]
Анализ проведенных расчетов по Миннефтепрому показал, что основное влияние на величину удельного расхода оказывают затраты времени на работы по проводке скважин t, Р Так, коэффициент парной корреляции Z/yz 0, 983. Это свидетельствует с достоверностью 0, 99 о наличии между ними линейной связи. Влияние же остальных двух факторов для данного объема наблюдений оказалось несущественным. Это подтвердилось и полученными значениями функции Фишера, характеризующими влияние факторов. (Методика использования критерия Фишера изложена в статье ( 1 ) этого же сборника). Соответствующее уравнение регрессии для Миннефтепрома имеет следующий вид [c.50]
Физико-механические показатели Коэффициент корреляции г Уравнение регрессии °ог JfLs-V or [c.97]
Для определения достоверности найденной корреляционной зависимости вычислялись среднеквадратичная погрешность коэффициентов корреляции оог и отношение г 1аог, которое не должно быть менее 2,6, если зависимость достоверна. Таким образом, для уточнения технических условий на физико-механические показатели резиновых смесей следует задаться физико-механическими показателями готовой продукции, а по уравнениям регрессии вычислить аналогичные показатели резиновых смесей. Так, найденная корреляционная- зависимость позволяет повысить точность и надежность определения показателей качества продукции без дополнительных затрат. [c.97]
Поставленная задача решается развертыванием зависимостей U(S), U(T), М(Т), 3(А), 3(S), P(S), P(A), ид(Т) в уравнения регрессии. Их параметры рассчитаны статистической обработкой данных собранных на предприятиях и опубликованных в [15], [16]. Стоимостные показатели пересчитаны в соответствии с индексами инфляции 1998-1990 гг. и в ряде случаев переведены из графической формы в числовую. Наиболее характерные числовые соотношения между параметрами A, S, Т и экономическими показателями производства и потребления бензина в предельно сжатом для лучшей обозримости виде представлены в табл. 4.2. [c.93]
Сравнение аост с ау показывает, что они для всех групп меньше единицы (0,56 0,74 0,51). Практически при аост/о [c.85]
Несмотря на кажущуюся надежность уравнения регрессии для всей выборочной совокупности НГДУ, использовать его для практических целей нельзя, так как проверка на нормальность распределения у показала, что р=1,043 значительно больше табличного значения, что свидетельствует о ненормальном распределении у.
Поэтому необходимо рассмотреть вопрос о правомерности использования данной совокупности НГДУ для корреляционного и регрессионного анализа. Для этого проведено попарное сравнение дисперсий о2 отдельных групп НГДУ. [c.88]Полученные для выборочной совокупности НГДУ уравнения регрессии (20) — (22) могут точно не совпадать с истинной зависимостью, характерной для генеральной совокупности НГДУ. Поэтому необходимо найти доверительный интервал Д, в котором с определенной вероятностью будет находиться расчетная величина производительности труда. Для среднего значения производительности труда у величину доверительного интервала при заданной доверительной вероятности, являющейся минимальной, рассчитывают по формуле [c.89]
По мере отклонения значений факторов от их средних значений величина доверительного интервала увеличивается. При наличии более двух факторов расчет доверительного полуинтервала очень трудоемок и может быть выполнен только на ЭВМ. В полученных уравнениях регрессии пять факторов, поэтому из-за отсутствия соответствующих программ расчетов Л определен по формуле (34).
Построение математической модели производительности труда открывает большие возможности для сравнительного анализа результатов работы НГДУ, поставленных в различные производственные условия, выявления факторов, обеспечивающих достижение высокой производительности в передовых НГДУ и, наоборот. Анализ расчетных значений производительности труда Z/P , определенных по уравнениям регрессии, показывает, [c.89]
Зная величину Эу для каждого фактора, можно оценить возможный рост (падение) производительности труда за счет изменения отдельных факторов. Так, если нам известно, что изменение дебита скважин на 1 % приводит к изменению производительности труда на k %, то, зная величину изменения указанного фактора в планируемом периоде, можно рассчитать ожидаемый уровень производительности труда. Так как уравнения регрессии (20) — (22) выражают зависимость производительности труда от основных факторов не по каждому НГДУ, а в среднем по выборочной совокупности их, то прогнозируемые значения производительности труда целесообразно рассчитывать по формулам (20) — (22) лишь в отраслевом масштабе для отдельных групп НГДУ с растущей, стабильной или падающей добычей. [c.145]
Определение взаимосвязи вида У/ / связано как с проведением большого количества вычислительных операций, так и с рпределением большого количества статистических парамет— ров позволяющих производить анализ и отбор наиболее значимых факторов и уравнений регрессии. Поэтому расчеты целесообразно проводить на ЭВМ. [c.22]
В связи с этим, в частности, автором статьи разработана специальная программа POL / » на алгоритмическом языке Фортран-1У, реализующая регрессионную модель (4). Особенностью программы является возможность ввода данных с указанием реального масштаба времени, что представляет удобство при проведении расчетов по большой номенклатуре материалов. Это вызвало необходимость разработки подпрограммы, которая осуществляет преобразование года в ро»ицныу Х » 4 -1 ° t. первый год наблюдаемого ряда удельных расходов материалов. В резульг-тате этого преобразования каждое значение X t соответствующее содержится в отрезке (1,7). Коэффициенты уравнения регрессии (7) получаются относительно переменной х. Это дает возможность избежать такой ситуации на [c.22]
Уравнение регрессии Прогноз нормы на 1981 г. Предложения ВНИИОЭНГ на 1981г. Утвержд. норма на 1981г. Относи ное отк ние [c.26]
Направление расхода и единица измерения нормы Уравнение регрессии Прогноз нормы на 1981г. Предложения ВНИИОЭНГ на 1981г. Утвержден, норма на 1981г. Относительное отклонение [c.27]
Корреляция и регрессия
Использование графического метода.Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс — индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции.
На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид y=bx+a+ε
Здесь ε — случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения εi для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям xi и yi можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т. к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где ei – наблюдаемые значения (оценки) ошибок εi, а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β — используют МНК (метод наименьших квадратов).
Система нормальных уравнений.
Для наших данных система уравнений имеет вид:
10a + 356b = 49
356a + 2135b = 9485
Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 68.16, a = 11.17
Уравнение регрессии:
y = 68.16 x — 11.17
1. Параметры уравнения регрессии.
Выборочные средние.
Выборочные дисперсии.
Среднеквадратическое отклонение
1. 1. Коэффициент корреляции
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:
Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 < rxy < 0.3: слабая;
0.3 < rxy < 0.5: умеренная;
0.5 < rxy < 0.7: заметная;
0.7 < rxy < 0.9: высокая;
0.9 < rxy < 1: весьма высокая;
В нашем примере связь между признаком Y фактором X весьма высокая и прямая.
1.2. Уравнение регрессии (оценка уравнения регрессии).
Линейное уравнение регрессии имеет вид y = 68.16 x -11.17
Коэффициентам уравнения линейной регрессии можно придать экономический смысл. Коэффициент уравнения регрессии показывает, на сколько ед. изменится результат при изменении фактора на 1 ед.
Коэффициент b = 68.16 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 68.16.
Коэффициент a = -11.17 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений x, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения x, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и x определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе — обратная). В нашем примере связь прямая.
1.3. Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета — коэффициенты. Коэффициент эластичности находится по формуле:
Он показывает, на сколько процентов в среднем изменяется результативный признак у при изменении факторного признака х на 1%. Он не учитывает степень колеблемости факторов.
В нашем примере коэффициент эластичности больше 1. Следовательно, при изменении Х на 1%, Y изменится более чем на 1%. Другими словами — Х существенно влияет на Y.
Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:
Т. е. увеличение x на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего Y на 0.9796 среднеквадратичного отклонения этого показателя.
1.4. Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.
Поскольку ошибка больше 15%, то данное уравнение не желательно использовать в качестве регрессии.
1.6. Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R2= 0.982 = 0.9596, т.е. в 95.96 % случаев изменения x приводят к изменению у. Другими словами — точность подбора уравнения регрессии — высокая. Остальные 4.04 % изменения Y объясняются факторами, не учтенными в модели.
x | y | x2 | y2 | x·y | y(x) | (yi-y) 2 | (y-y(x))2 | (xi-x)2 | |y — yx|:y |
0.371 | 15.6 | 0.1376 | 243.36 | 5.79 | 14.11 | 780.89 | 2.21 | 0.1864 | 0.0953 |
0.399 | 19.9 | 0.1592 | 396.01 | 7.94 | 16.02 | 559.06 | 15.04 | 0.163 | 0.1949 |
0.502 | 22.7 | 0.252 | 515.29 | 11.4 | 23.04 | 434.49 | 0. 1176 | 0.0905 | 0.0151 |
0.572 | 34.2 | 0.3272 | 1169.64 | 19.56 | 27.81 | 87.32 | 40.78 | 0.0533 | 0.1867 |
0.607 | 44.5 | .3684 | 1980.25 | 27.01 | 30.2 | 0.9131 | 204.49 | 0.0383 | 0.3214 |
0.655 | 26.8 | 0.429 | 718.24 | 17.55 | 33.47 | 280.38 | 44.51 | 0.0218 | 0.2489 |
0.763 | 35.7 | 0.5822 | 1274.49 | 27. 24 | 40.83 | 61.54 | 26.35 | 0.0016 | 0.1438 |
0.873 | 30.6 | 0.7621 | 936.36 | 26.71 | 48.33 | 167.56 | 314.39 | 0.0049 | 0.5794 |
2.48 | 161.9 | 6.17 | 26211.61 | 402 | 158.07 | 14008.04 | 14.66 | 2.82 | 0.0236 |
7.23 | 391.9 | 9.18 | 33445.25 | 545.2 | 391.9 | 16380.18 | 662.54 | 3.38 | 1.81 |
2.1. Значимость коэффициента корреляции.
По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=7 находим tкрит:
tкрит = (7;0.05) = 1.895
где m = 1 — количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически — значим
В парной линейной регрессии t2r = t2b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.
2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:
S2y = 94.6484 — необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).
Sy = 9.7287 — стандартная ошибка оценки (стандартная ошибка регрессии).
S a — стандартное отклонение случайной величины a.
Sb — стандартное отклонение случайной величины b.
2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения.
Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя.
Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X p = 1
(50.53;63.44)
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
Индивидуальные доверительные интервалы для Y при данном значении X.
(a + bx i ± ε)
где
xi | y = -11.17 + 68.16xi | εi | ymin | ymax |
0.371 | 14.11 | 19.91 | -5.8 | 34.02 |
0. 399 | 16.02 | 19.85 | -3.83 | 35.87 |
0.502 | 23.04 | 19.67 | 3.38 | 42.71 |
0.572 | 27.81 | 19.57 | 8.24 | 47.38 |
0.607 | 30.2 | 19.53 | 10.67 | 49.73 |
0.655 | 33.47 | 19.49 | 13.98 | 52.96 |
0.763 | 40.83 | 19.44 | 21.4 | 60.27 |
0.873 | 48.33 | 19.45 | 28.88 | 67.78 |
2.48 | 158.07 | 25. 72 | 132.36 | 183.79 |
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
Проверим гипотезу H0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H1 не равно) на уровне значимости α=0.05.
tкрит = (7;0.05) = 1.895
Поскольку 12.8866 > 1.895, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Поскольку 2.0914 > 1.895, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b — tкрит Sb; b + tкрит Sb)
(68.1618 — 1.895 • 5.2894; 68.1618 + 1.895 • 5.2894)
(58.1385;78.1852)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a — ta)
(-11.1744 — 1.895 • 5.3429; -11.1744 + 1.895 • 5.3429)
(-21.2992;-1.0496)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
2) F-статистики. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с lang=EN-US>n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.
где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0:
R2=0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:
где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=7, Fkp = 5.59
Поскольку фактическое значение F > Fkp, то коэффициент детерминации статистически значим (Найденная оценка уравнения регрессии статистически надежна).
Проверка на наличие автокорреляции остатков.
Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.
Автокорреляция (последовательная корреляция) определяется как корреляция между наблюдаемыми показателями, упорядоченными во времени (временные ряды) или в пространстве (перекрестные ряды). Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов и очень редко при использовании перекрестных данных.
В экономических задачах значительно чаще встречается положительная автокорреляция, нежели отрицательная автокорреляция. В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов.
Отрицательная автокорреляция фактически означает, что за положительным отклонением следует отрицательное и наоборот. Такая ситуация может иметь место, если ту же зависимость между спросом на прохладительные напитки и доходами рассматривать по сезонным данным (зима-лето).
Среди основных причин, вызывающих автокорреляцию, можно выделить следующие:
1. Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводят к системным отклонениям точек наблюдения от линии регрессии, что может обусловить автокорреляцию.
2. Инерция. Многие экономические показатели (инфляция, безработица, ВНП и т. д.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Поэтому изменение показателей происходит не мгновенно, а обладает определенной инертностью.
3. Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).
4. Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его интервалам. Это может привести к определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может служить причиной автокорреляции.
Последствия автокорреляции схожи с последствиями гетероскедастичности: выводы по t- и F-статистикам, определяющие значимость коэффициента регрессии и коэффициента детерминации, возможно, будут неверными.
Обнаружение автокорреляции
1. Графический метод
Есть ряд вариантов графического определения автокорреляции. Один из них увязывает отклонения ei с моментами их получения i.
При этом по оси абсцисс откладывают либо время получения статистических данных, либо порядковый номер наблюдения, а по оси ординат – отклонения ei (либо оценки отклонений).
Естественно предположить, что если имеется определенная связь между отклонениями, то автокорреляция имеет место. Отсутствие зависимости скоре всего будет свидетельствовать об отсутствии автокорреляции.
Автокорреляция становится более наглядной, если построить график зависимости ei от ei-1.
Критерий Дарбина-Уотсона.
Этот критерий является наиболее известным для обнаружения автокорреляции.
При статистическом анализе уравнения регрессии на начальном этапе часто проверяют выполнимость одной предпосылки: условия статистической независимости отклонений между собой.
При этом проверяется некоррелированность соседних величин ei.
y | y(x) | ei = y-y(x) | e2 | (ei — ei-1)2 |
15.6 | 14.11 | 1.49 | 2.21 | 0 |
19.9 | 16.02 | 3.88 | 15.04 | 5.72 |
22.7 | 23.04 | -0.3429 | 0.1176 | 17.81 |
34.2 | 27.81 | 6.39 | 40.78 | 45.28 |
44.5 | 30.2 | 14.3 | 204.49 | 62.64 |
26.8 | 33.47 | -6.67 | 44.51 | 439.82 |
35. 7 | 40.83 | -5.13 | 26.35 | 2.37 |
30.6 | 48.33 | -17.73 | 314.39 | 158.7 |
161.9 | 158.07 | 3.83 | 14.66 | 464.81 |
662.54 | 1197.14 |
Критические значения d1 и d2 определяются на основе специальных таблиц для требуемого уровня значимости α, числа наблюдений n = 9 и количества объясняющих переменных m=1.
Автокорреляция отсутствует, если выполняется следующее условие:
d1 < DW и d2 < DW < 4 — d2.
Не обращаясь к таблицам, можно пользоваться приблизительным правилом и считать, что автокорреляция остатков отсутствует, если 1. 5 < DW < 2.5. Для более надежного вывода целесообразно обращаться к табличным значениям.
Решить свою задачу онлайн
страница не найдена — Колледж Уильямс
’62 Центр театра и танца, ’62 Центр | ||
Касса | 597-2425 | |
Магазин костюмов | 597-3373 | |
Менеджер мероприятий/помощник менеджера | 597-4808 | 597-4815 факс |
Производство | 597-4474 факс | |
Магазин сцен | 597-2439 | |
’68 Центр изучения карьеры, Мирс | 597-2311 | 597-4078 факс |
Академические ресурсы, Парески | 597-4672 | 597-4959 факс |
Служба поддержки инвалидов, Парески | 597-4672 | |
Приемная, Уэстон Холл | 597-2211 | 597-4052 факс |
Позитивные действия, Хопкинс Холл | 597-4376 | |
Африканские исследования, Голландия | 597-2242 | 597-4222 факс |
Американские исследования, Шапиро | 597-2074 | 597-4620 факс |
Антропология и социология, Холландер | 597-2076 | 597-4305 факс |
Архив и специальные коллекции, Sawyer | 597-4200 | 597-2929 факс |
Читальный зал | 597-4200 | |
Искусство (История, Студия), Spencer Studio Art/Lawrence | 597-3578 | 597-3693 факс |
Архитектурная студия, Spencer Studio Art | 597-3134 | |
Студия фотографии, Spencer Studio Art | 597-2030 | |
Студия печати, Spencer Studio Art | 597-2496 | |
Скульптурная студия, Spencer Studio Art | 597-3101 | |
Senior Studio, Spencer Studio Art | 597-3224 | |
Видео/фотостудия, Spencer Studio Art | 597-3193 | |
Азиатские исследования, Голландия | 597-2391 | 597-3028 факс |
Астрономия/астрофизика, Физика Томпсона | 597-2482 | 597-3200 факс |
Отделение легкой атлетики, физического воспитания, отдыха, Ласелл | 597-2366 | 597-4272 факс |
Спортивный директор | 597-3511 | |
Лодочная пристань, озеро Онота | 443-9851 | |
Вагоны | 597-2366 | |
Фитнес-центр | 597-3182 | |
Хоккейный каток Ice Line, Lansing Chapman | 597-2433 | |
Очные, Спортивный центр Чендлера | 597-3321 | |
Физкультура | 597-2141 | |
Влажная линия бассейна, Спортивный центр Чандлера | 597-2419 | |
Информация о спорте, Хопкинс-холл | 597-4982 | 597-4158 факс |
Спортивная медицина | 597-2493 | 597-3052 факс |
Корты для сквоша | 597-2485 | |
Поле для гольфа Taconic | 458-3997 | |
Биохимия и молекулярная биология, Биология Томпсона | 597-2126 | |
Биоинформатика, геномика и протеомика, Бронфман | 597-2124 | |
Биология, Биология Томпсона | 597-2126 | 597-3495 факс |
Безопасность и безопасность кампуса, Хопкинс-холл | 597-4444 | 597-3512 факс |
Карты доступа/Системы сигнализации | 597-4970/4033 | |
Служба сопровождения, Хопкинс-холл | 597-4400 | |
Офицеры и диспетчеры | 597-4444 | |
Секретарь, удостоверения личности | 597-4343 | |
Распределительный щит | 597-3131 | |
Центр развития творческого сообщества, 66 Stetson Court | 884-0093 | |
Центр экономики развития, 1065 Main St | 597-2148 | 597-4076 факс |
Компьютерный зал | 597-2522 | |
Вестибюль | 597-4383 | |
Центр экологических исследований, выпуск 1966 г. Экологический центр | 597-2346 | 597-3489 факс |
Лаборатория наук об окружающей среде, Морли | 597-2380 | |
Экологические исследования | 597-2346 | |
Лаборатория ГИС | 597-3183 | |
Центр иностранных языков, литературы и культуры, Голландия | 597-2391 | 597-3028 факс |
Арабистика, Голландия | 597-2391 | 597-3028 факс |
Сравнительная литература, Hollander | 597-2391 | |
Critical Languages, Hollander | 597-2391 | 597-3028 факс |
Лингвистическая лаборатория | 597-3260 | |
Русский, голландский | 597-2391 | |
Центр обучения в действии, Brooks House | 597-4588 | 597-3090 факс |
Библиотека редких книг Чапина, Сойер | 597-2462 | 597-2929 факс |
Читальный зал | 597-4200 | |
Офис капелланов, Парески | 597-2483 | 597-3955 факс |
Еврейский религиозный центр, Stetson Court 24 | 597-2483 | |
Мусульманская молитвенная комната, часовня Томпсона (нижний уровень) | 597-2483 | |
Католическая часовня Ньюмана, часовня Томпсона (нижний уровень) | 597-2483 | |
Химия, Томпсон Химия | 597-2323 | 597-4150 факс |
Классика (греческая и латинская), голландская | 597-2242 | 597-4222 факс |
Когнитивные науки, Бронфман | 597-4594 | |
Колледж Маршал, Физика Томпсона | 597-2008 | |
Отношения с колледжами | 597-4057 | |
25-я программа воссоединения, Фогт | 597-4208 | 597-4039 факс |
50-я программа воссоединения, Фогт | 597-4284 | 597-4039 факс |
Операции по развитию, Мирс Уэст | 597-4154 | 597-4333 факс |
Мероприятия для выпускников, Vogt | 597-4146 | 597-4548 факс |
Фонд выпускников | 597-4153 | 597-4036 факс |
Отношения с выпускниками, Мирс Уэст | 597-4151 | 597-4178 факс |
Почтовые службы для выпускников и разработчиков, Mears West | 597-4369 | |
Развитие, Фогт | 597-4256 | |
Отношения с донорами, Фогт | 597-3234 | 597-4039 факс |
Отдел планирования подарков, Фогт | 597-3538 | 597-4039 факс |
Офис грантов, Мирс-Уэст | 597-4025 | 597-4333 факс |
Программа крупных подарков, Vogt | 597-4256 | 597-4548 факс |
Родительский фонд, фогт | 597-4357 | 597-4036 факс |
Prospect Management & Research, Mears | 597-4119 | 597-4178 факс |
Начало и академические мероприятия, Jesup | 597-2347 | 597-4435 факс |
Коммуникации, Хопкинс Холл | 597-4277 | 597-4158 факс |
Информация о спорте, Хопкинс-холл | 597-4982 | 597-4158 факс |
Веб-группа, Southworth Schoolhouse | ||
Williams Magazines (ранее Alumni Review), Hopkins Hall | 597-4278 | |
Информатика, Химия Томпсона | 597-3218 | 597-4250 факс |
Конференции и мероприятия, Парески | 597-2591 | 597-4748 факс |
Справки о доме на дереве вяза, ферма Маунт-Хоуп | 597-2591 | |
Офис диспетчера, Хопкинс-холл | 597-4412 | 597-4404 факс |
Кредиторская задолженность и ввод данных, Hopkins Hall | 597-4453 | |
Касса и кассовые чеки, Hopkins Hall | 597-4396 | |
Финансовые информационные системы, Хопкинс-холл | 597-4023 | |
Карточки для покупок, Хопкинс Холл | 597-4413 | |
Студенческие кредиты, Hopkins Hall | 597-4683 | |
Танец, ’62 Центр | 597-2410 | |
Центр Дэвиса (ранее Мультикультурный центр), Дженнесс | 597-3340 | 597-3456 факс |
Харди Хаус | 597-2129 | |
Дом Дженнесс | 597-3344 | |
Райс Хаус | 597-2453 | |
Декан колледжа, Хопкинс-холл | 597-4171 | 597-3507 факс |
Декан факультета, Хопкинс Холл | 597-4351 | 597-3553 факс |
Обеденные услуги, капельницы | 597-2121 | 597-4618 факс |
’82 Гриль, Парески | 597-4585 | |
Пекарня, Парески | 597-4511 | |
Питание, Факультет | 597-2452 | |
Обеденный зал Дрисколла, Дрисколл | 597-2238 | |
Эко-кафе, Научный центр | 597-2383 | |
Grab ‘n Go, Парески | 597-4398 | |
Закусочная Lee, Парески | 597-3487 | |
Обеденный зал Mission Park, Mission Park | 597-2281 | |
Уитменс, Парески | 597-2889 | |
Экономика, Шапиро | 597-2476 | 597-4045 факс |
английский, голландский | 597-2114 | 597-4032 факс |
Объекты, Сервисное здание объектов | 597-2301 | |
Запрос автомобиля для колледжа | 597-2302 | |
Вечерние/выходные чрезвычайные ситуации | 597-4444 | |
Запросы на работу объектов | 597-4141 факс | |
Особые события | 597-4020 | |
Склад | 597-2143 | 597-4013 факс |
Клуб факультета, Дом факультета/Центр выпускников | 597-2451 | 597-4722 факс |
Бронирование | 597-3089 | |
Офис стипендий, Хопкинс Холл | 597-3044 | 597-3507 факс |
Финансовая помощь, Weston Hall | 597-4181 | 597-2999 факс |
Геофизические науки, Кларк Холл | 597-2221 | 597-4116 факс |
немецкий-русский, голландский | 597-2391 | 597-3028 факс |
Глобальные исследования, Холландер | 597-2247 | |
Высшая программа по истории искусств, The Clark | 458-2317 факс | |
Health and Wellness Services, Thompson Ctr Health | 597-2206 | 597-2982 факс |
Санитарное просвещение | 597-3013 | |
Услуги комплексного благополучия (консультации) | 597-2353 | |
Экстренные ситуации, угрожающие жизни | Звоните 911 | |
Медицинские услуги | 597-2206 | |
История, Холландер | 597-2394 | 597-3673 факс |
История науки, Бронфман | 597-4116 факс | |
Хопкинс Форест | 597-4353 | |
Центр Розенбурга | 458-3080 | |
Отдел кадров, здание B&L | 597-2681 | 597-3516 факс |
Услуги няни, здание B&L | 597-4587 | |
Преимущества | 597-4355 | |
Программа помощи сотрудникам | 800-828-6025 | |
Занятость | 597-2681 | |
Расчет заработной платы | 597-4162 | |
Ресурсы для супругов/партнеров | 597-4587 | |
Трудоустройство студентов | 597-4568 | |
Weather Line (ICEY) | 597-4239 | |
Гуманитарные науки, Шапиро | 597-2076 | |
Информационные технологии, Джесуп | 597-2094 | 597-4103 факс |
Пакеты для чтения курсов, почтовый ящик для офисных услуг | 597-4090 | |
Центр кредитования оборудования, Додд, приложение | 597-4091 | |
Служба поддержки преподавателей/персонала, [email protected] | 597-4090 | |
Медиа-услуги и помощь в классе | 597-2112 | |
Служба поддержки студентов, [электронная почта защищена] | 597-3088 | |
Телекоммуникации/телефоны | 597-4090 | |
Междисциплинарные исследования, Hollander | 597-2552 | |
Международное образование и обучение вне дома, Хопкинс-холл | 597-4262 | 597-3507 факс |
Инвестиционный офис, Хопкинс Холл | 597-4447 | |
Офис в Бостоне | 617-502-2400 | 617-426-5784 факс |
Еврейские исследования, Мазер | 597-3539 | |
Справедливость и право, Холландер | 597-2102 | |
Latina/o Studies, Hollander | 597-2242 | 597-4222 факс |
Исследования лидерства, Шапиро | 597-2074 | 597-4620 факс |
Морские исследования, Бронфман | 597-2297 | |
Математика и статистика, Bascom | 597-2438 | 597-4061 факс |
Музыка, Бернхард | 597-2127 | 597-3100 факс |
Concertline (записанная информация) | 597-3146 | |
Неврология, Биология Томпсона | 597-4107 | 597-2085 факс |
Центр Окли, Окли | 597-2177 | 597-4126 факс |
Управление институционального разнообразия и справедливости, Hopkins Hall | 597-4376 | 597-4015 факс |
Счетная палата студентов, Хопкинс Холл | 597-4396 | 597-4404 факс |
Исследования производительности, ’62 Центр | 597-4366 | |
Философия, Шапиро | 597-2074 | 597-4620 факс |
Физика, Физика Томпсона | 597-2482 | 597-4116 факс |
Планетарий/Обсерватория Хопкинса | 597-3030 | |
Старый театр обсерватории Хопкинса | 597-4828 | |
Бронирование | 597-2188 | |
Политическая экономия, Шапиро | 597-2327 | |
Политология, Шапиро | 597-2168 | 597-4194 факс |
Офис президента, Хопкинс-холл | 597-4233 | 597-4015 факс |
Дом Президента | 597-2388 | 597-4848 факс |
Услуги печати/почты для преподавателей/сотрудников, ’37 House | 597-2022 | |
Программа обучения, Бронфман | 597-4522 | 597-2085 факс |
Офис проректора, Хопкинс-холл | 597-4352 | 597-3553 факс |
Психология, психологические кабинеты и лаборатории | 597-2441 | 597-2085 факс |
Недвижимость, здание B&L | 597-2195/4238 | 597-5031 факс |
Ипотека преподавателей/сотрудников | 597-4238 | |
Аренда жилья для преподавателей/сотрудников | 597-2195 | |
Офис ЗАГСа, Хопкинс Холл | 597-4286 | 597-4010 факс |
Религия, голландец | 597-2076 | 597-4222 факс |
Романские языки, голландский | 597-2391 | 597-3028 факс |
Планировщик помещений | 597-2555 | |
Соответствие требованиям безопасности и охраны окружающей среды, класс ’37 House | 597-3003 | |
Библиотека Сойера, Сойер | 597-2501 | 597-4106 факс |
Услуги доступа | 597-2501 | |
Приобретение/Серийный номер | 597-2506 | |
Услуги каталогизации/метаданных | 597-2507 | |
Межбиблиотечный абонемент | 597-2005 | 597-2478 факс |
Исследовательские и справочные услуги | 597-2515 | |
Стеллаж | 597-4955 | 597-4948 факс |
Системы | 597-2084 | |
Научная библиотека Шоу, Научный центр | 597-4500 | 597-4600 факс |
Научные и технологические исследования, Бронфман | 597-2239 | |
Научный центр, Бронфман | 597-4116 факс | |
Магазин электроники | 597-2205 | |
Машиностроительный/модельный цех | 597-2230 | |
Безопасность | 597-4444 | |
Специальные академические программы, Hardy | 597-3747 | 597-4530 факс |
Информация о спорте, Хопкинс-холл | 597-4982 | 597-4158 факс |
Студенческая жизнь, Парески | 597-4747 | |
Планировщик помещений | 597-2555 | |
Управление студенческими центрами | 597-4191 | |
Планирование студенческих мероприятий | 597-2546 | |
Студенческое общежитие, Парески | 597-2555 | |
Участие студентов | 597-4749 | |
Жилищные программы высшего класса | 597-4625 | |
Студенческая почта, Почта Парески | 597-2150 | |
Устойчивое развитие/Zilkha Center, Harper | 597-4462 | |
Коммутатор, Хопкинс Холл | 597-3131 | |
Книжный магазин Уильямс | 458-8071 | 458-0249 факс |
Театр, 62 Центр | 597-2342 | 597-4170 факс |
Управление траста и недвижимости, Sears House | 597-4259 | |
Учебники | 597-2580 | |
ПО за Campus Life, Hopkins Hall | 597-2044 | 597-3996 факс |
Вице-президент по связям с колледжами, Mears | 597-4057 | 597-4178 факс |
Вице-президент по финансам и администрации, Хопкинс Холл | 597-4421 | 597-4192 факс |
Центр визуальных ресурсов, Лоуренс | 597-2015 | 597-3498 факс |
Детский центр колледжа Уильямс, Детский центр Уильямс | 597-4008 | 597-4889 факс |
Художественный музей колледжа Уильямс (WCMA), Лоуренс | 597-2429 | 597-5000 факс |
Подготовка музея | 597-2426 | |
Безопасность музея | 597-2376 | |
Музейный магазин | 597-3233 | |
Уильямс Интернэшнл | 597-2161 | |
Williams Outing Club, Парески | 597-2317 | |
Аппаратная/стол для учащихся | 597-4784 | |
Проект Уильямса по экономике высшего образования, Мирс-Уэст | 597-2192 | |
Уильямс Рекорд, Парески | 597-2400 | 597-2450 факс |
Программа Уильямса-Эксетера в Оксфорде, Оксфордский университет | 011-44-1865-512345 | |
Программа Williams-Mystic, Музей морского порта Mystic | 860-572-5359 | 860-572-5329 факс |
Женские, гендерные и сексуальные исследования, Шапиро | 597-3143 | 597-4620 факс |
Программы написания программ, Hopkins Hall | 597-4615 | |
Центр экологических инициатив Зилха, Харпер | 597-4462 |
Краткая иллюстрация регрессионного анализа в экономике
Айла Мирик
ист Артур Окунь в 1960-х .
Краткая история
Артур Окун был председателем Совета экономических консультантов президента Кеннеди в начале 1960-х годов. В начале 19 века экономика США находилась в разгаре рецессии.60-х годов после длительного периода расширения после Второй мировой войны. Одной из главных целей Окуна было убедить политиков в том, что федеральному правительству необходимо перейти к действиям и принять агрессивную кейнсианскую политику управления спросом для стимулирования роста. Окун сосредоточился на высокой цене более низкого реального объема производства из-за более высокой безработицы, чтобы убедить политиков.
Основываясь на квартальных данных за 1947-1960 гг., Окун обнаружил сильную линейную и отрицательную зависимость между процентными изменениями уровня безработицы и процентными изменениями реального валового национального продукта (ВНП). В его оригинале 1962, Окун определил это как метод первых разностей и подогнал регрессионную модель, используя 55 ежеквартальных наблюдений со второго квартала 1947 г. по четвертый квартал 1960 г. Как представлено в его статье, модель имеет вид
была его относительная простота («для производства большего количества товаров и услуг в экономике обычно требуется больше труда» (Knotek)), сильная корреляция между двумя переменными с r = 0,79 и использование доступных данных для двух ключевых макроэкономических переменных. Согласно исходной регрессионной модели, рост реального объема производства на 1% в данном квартале был связан со снижением уровня безработицы на 0,30 процентного пункта в этом квартале.
Воспроизведение модели Оукена
Давайте посмотрим, сможем ли мы воспроизвести первоначальные выводы Оукена, используя данные того же исторического периода. Экономические данные легко доступны для общественности через различные базы данных федерального правительства, но экономические данные могут подвергаться многочисленным изменениям. Поэтому было важно найти данные, которые Окун использовал бы в 1962 году. Данные о безработице были найдены в апрельских выпусках «Обзора текущей деятельности» за 1960 и 1961 годы, опубликованных Бюро статистики труда. Реальный выпуск ВНП может подвергаться множеству пересмотров и может меняться в зависимости от базового года или показателя, взвешенного по цепочке. Лучшим источником данных о реальном ВНП было Бюро экономического анализа США. Исходные данные представлены в приложении.
Затем была проведена обычная регрессия методом наименьших квадратов так же, как Окуном в 1962 году. В таблице 1 представлены результаты повторной модели с добавлением нескольких дополнительных статистических показателей: Окунь сообщил в 1962 году. Небольшие различия могут быть результатом различий в округлении. Поскольку безработица сообщается ежемесячно, я также беру средний процент безработицы за три квартала, чтобы получить квартальный уровень безработицы, а затем беру разницу между двумя средними значениями. И пересечение, и изменение коэффициента реального ВНП значимы на уровне значимости 0,00. Также отмечается, что коэффициент корреляции (r) между двумя переменными составляет 0,76, что близко соответствует коэффициенту Оукена 0,79.уровень. Значение p из F-теста в таблице 1 очень близко к 0 и показывает статистически значимое соответствие модели данным.
Резюме
Закон Оукена описывает отрицательную связь между безработицей и реальным выпуском в экономике США. Соотношение по-прежнему используется сегодня для прогнозирования изменений в безработице с учетом уровня роста реального объема производства, а также для прогнозирования соответствующего уровня ставки овернайт по федеральным фондам.
Окун также изменил направление модели, чтобы определить соответствующий прогноз роста реального объема производства с учетом изменения уровня безработицы.
Коэффициент 3,3 (т. е. величина, обратная исходной оценке коэффициента 0,30) был назван коэффициентом Оукена для безработицы. Согласно этой версии модели, «увеличение уровня безработицы на один процентный пункт означает уменьшение ВНП на 3,3%» (Окун, 1962). Недавняя работа показала, что простое использование обратной величины коэффициента для расчета коэффициента безработицы Оукена приводит к необъективным оценкам (Barreto and Howland, 1993). Правильный способ оценки несмещенного коэффициента Окуна по безработице состоит в том, чтобы фактически провести обратную регрессию роста реального объема производства по изменению уровня безработицы. Выполнение регрессии данных в этом направлении приводит к уравнению
Таким образом, согласно этим оценкам, увеличение уровня безработицы на один процентный пункт означает падение реального ВНП ближе к 2% по сравнению с предполагаемым падением объема производства на 3,3%.
Это будет обсуждаться более подробно в последующем анализе, когда закон Оукена оценивается с использованием текущих данных.
Ресурсы
www.bls.gov
www.bea.gov
Баррето, Умберто и Фрэнк Хауленд, 1993 г.