Регрессия в экономике это: Регрессия в эконометрике

Уравнение регрессии — Энциклопедия по экономике

Частный коэффициент эластичности показывает, на сколько процентов в среднем изменяется производительность труда при изменении данного фактора на 1%. Для полученного уравнения регрессии коэффициенты эластичности соответственно равны Э2=+4,25 Э3=+0,38 34 = —5,69 Э5=+0,43.  [c.201]
Многофакторная корреляционная модель дает возможность не только выразить количественно влияние факторов на изучаемый показатель, но и предсказать значение функции и, следовательно, управлять анализируемым показателем. Результаты такого анализа предназначены для разработки плановых заданий. Использование этого метода предполагает предварительное установление формы связи показателей и формирующих их факторов, расчет показателей достоверности, а также пределов, в которых может быть использовано уравнение регрессии.  [c.102]
Таблица 5.2. Коэффициент корреляции и уравнения регрессии для физико-механических показателей резиновых смесей и готовых протекторов
Параметры уравнений регрессии находят решением системы нормальных уравнений, отвечающих требованию способа наименьших квадратов.  [c.390]

Вычисление парных коэффициентов корреляции между исследуемыми факторами, построение уравнения регрессии, проверка его надежности по критериям Фишера и Стьюдента, исключение из исходной матрицы ненадежных факторов.  [c.34]


Вычисление коэффициентов эластичности для уравнения регрессии в линейной форме.  [c.34]

Уравнение регрессии для объединения Татнефть получило следующий вид  [c.25]

Ниже представлены пять вариантов расчета уравнений регрессия по объединению Татнефть с шестью, пятью, четырьмя, тремя и двумя факториальными признаками, выполненных на ЭВМ Минск-22 (табл. 2).  [c.25]

Следует отметить, что факторы, выделенные при анализе себестоимости в качестве основных и учтенные при решении уравнения регрессии, не являются самостоятельными и независящими друг от друга. Известно, что на объем добычи нефти из скважины (дебит) влияет количество добываемой с нефтью воды и объем нагнетаемого в пласт агента для поддержания пластового давления. Кроме того, с падением дебитов скважины переводятся на механизированный способ эксплуатации, растет стоимость основных фондов и численность работников.

Существует также зависимость между обводненностью нефти и объемом воды, закачанной в пласт, между стоимостью основных производственных фондов и численностью промышленно-производственного персонала и т. д.  [c.26]

Для этого отыскивались уравнения регрессии для линейной, гиперболической и параболической второго порядка форм связи(подробнее вопрос о форме связи изложен ниже). При этом использовались расчеты парных корреляционно-регрессионных зависимостей между суточной загрузкой оборудования и расходом в отдельности топлива, воды, электроэнергии и пара, приходящиеся на единицу целевой продукции.  [c.99]

На основании данных табл. 4.2, 4.3, 4.4 зависимости, представленные в структуре интегрального показателя уровня качества, переведены в форму уравнений регрессии  [c.94]

Наилучшие результаты дает регрессионный анализ. Сопоставляя результаты решений уравнений регрессии конкретных  [c.148]


Наилучшие результаты дает регрессионный анализ. Сопоставляя результаты решений уравнений регрессии конкретных предприятий со средними данными и показателями передовых предприятий, можно с достаточной точностью определить причины различий, включая и несопоставимые на первый взгляд, факторы.  [c.150]

Математически задача анализа производительности труда формулируется следующим образом требуется найти аналитическое выражение зависимости производительности труда от определяющих ее факторов-аргументов, т. е. найти функцию y = f(x). При этом под факторами-аргументами или просто факторами будем понимать все независимые переменные уравнения регрессии (х , х2,. .., хп).  [c.63]

Полученные уравнения регрессии имеют следующий вид  [c.83]

Уы — среднее значение расчетной производительности труда, определенное по формулам (20) — (23). Если полученные значения -критерия больше его соответствующих табличных значений (Р>Р ), это свидетельствует о том, что полученные уравнения регрессии учитывают влияние основных факторов, определяющих уровень производительности  [c.84]

Существенность включенных в уравнения регрессии (20) — (22) факторов оценена по коэффициенту множественной корреляции R и путем проверки по /-критерию Стьюдента.  [c.86]

Для выявления существенности факторов х,- в уравнениях (20) — (22) были рассчитаны значения -критерия Стьюдента для всех коэффициентов уравнения регрессии, которые затем были сопоставлены с табличными значениями.

Как видно из табл. 37, расчетные значения -критерия Стьюдента для всех коэффициентов полученных уравнений регрессий (20) — (22) выше табличных, что свидетельствует о их значимости.  [c.86]

Характер корреляционных зависимостей определяется уравнениями регрессии, показывающими закон изменения изучаемого показателя при изменении аргумента. Достоверность расчетов в корреляционном анализе зависит от количества наблюдений, от так называемого объема выборки. Увеличение объема выборки повышает надежность результатов корреляционного анализа.  [c.396]

Окончательный выбор аппроксимирующей кривой между уравнением регрессии, полученным на основе динамического ряда предложений ВНИИОЭНГ, и уравнением регрессии, полученным на основе динамического ряда фактических удельных расходов, по каждому материалу осуществлялся на основе сопоставления полученной величины прогноза с показателями, 1979 г.  [c.25]

Так, например, по обсадным и бурильным трубам была взята база исходных данных за 1 967-1 97 9 гг. , в основном динамические ряды фактических удельных расходов. В табл.1 для них приведены уравнения регрессии, результаты сопоставления прогнозов норм расхода с предложениями ВНИИОЭНГ)Г разработанными на основе расчетно— аналитического метода, и утвержденная норма. Сопоставление осуществлялось с учетом определения относительного отклонения между ними по формуле  [c.25]

Для насосно— компрессорных труб в качестве базы исходных данных были взяты в основном предложения ВНИИОЭНГ по нормам расхода за 1971-1980 гг. В табл. 2 для них также приведены уравнения регрессии и результаты сопоставления прогнозов и предложений ВНИИОЭНГ по нормам расхода. Из этой таблицы видно, что наиболее значительные расхождения между прогнозом и предложениями имеются для таких направлений расхода, как оборудование скважин, вводимых из бездействия — фонтанных и компрессорных, а также насосных.  [c.25]

Это эквивалентно определению коэффициентов линейного уравнения регрессии для новых переменных  [c.28]

Анализ проведенных расчетов по Миннефтепрому показал, что основное влияние на величину удельного расхода оказывают затраты времени на работы по проводке скважин t, Р Так, коэффициент парной корреляции Z/yz 0, 983. Это свидетельствует с достоверностью 0, 99 о наличии между ними линейной связи. Влияние же остальных двух факторов для данного объема наблюдений оказалось несущественным. Это подтвердилось и полученными значениями функции Фишера, характеризующими влияние факторов. (Методика использования критерия Фишера изложена в статье ( 1 ) этого же сборника). Соответствующее уравнение регрессии для Миннефтепрома имеет следующий вид  [c.50]

Физико-механические показатели Коэффициент корреляции г Уравнение регрессии °ог JfLs-V or  [c.97]

Для определения достоверности найденной корреляционной зависимости вычислялись среднеквадратичная погрешность коэффициентов корреляции оог и отношение г 1аог, которое не должно быть менее 2,6, если зависимость достоверна. Таким образом, для уточнения технических условий на физико-механические показатели резиновых смесей следует задаться физико-механическими показателями готовой продукции, а по уравнениям регрессии вычислить аналогичные показатели резиновых смесей. Так, найденная корреляционная- зависимость позволяет повысить точность и надежность определения показателей качества продукции без дополнительных затрат.  [c.97]

Поставленная задача решается развертыванием зависимостей U(S), U(T), М(Т), 3(А), 3(S), P(S), P(A), ид(Т) в уравнения регрессии. Их параметры рассчитаны статистической обработкой данных собранных на предприятиях и опубликованных в [15], [16]. Стоимостные показатели пересчитаны в соответствии с индексами инфляции 1998-1990 гг. и в ряде случаев переведены из графической формы в числовую. Наиболее характерные числовые соотношения между параметрами A, S, Т и экономическими показателями производства и потребления бензина в предельно сжатом для лучшей обозримости виде представлены в табл. 4.2.  [c.93]

Сравнение аост с ау показывает, что они для всех групп меньше единицы (0,56 0,74 0,51). Практически при аост/о [c.85]

Несмотря на кажущуюся надежность уравнения регрессии для всей выборочной совокупности НГДУ, использовать его для практических целей нельзя, так как проверка на нормальность распределения у показала, что р=1,043 значительно больше табличного значения, что свидетельствует о ненормальном распределении у.

Поэтому необходимо рассмотреть вопрос о правомерности использования данной совокупности НГДУ для корреляционного и регрессионного анализа. Для этого проведено попарное сравнение дисперсий о2 отдельных групп НГДУ.  [c.88]

Полученные для выборочной совокупности НГДУ уравнения регрессии (20) — (22) могут точно не совпадать с истинной зависимостью, характерной для генеральной совокупности НГДУ. Поэтому необходимо найти доверительный интервал Д, в котором с определенной вероятностью будет находиться расчетная величина производительности труда. Для среднего значения производительности труда у величину доверительного интервала при заданной доверительной вероятности, являющейся минимальной, рассчитывают по формуле  [c.89]

По мере отклонения значений факторов от их средних значений величина доверительного интервала увеличивается. При наличии более двух факторов расчет доверительного полуинтервала очень трудоемок и может быть выполнен только на ЭВМ. В полученных уравнениях регрессии пять факторов, поэтому из-за отсутствия соответствующих программ расчетов Л определен по формуле (34).

При [c.89]

Построение математической модели производительности труда открывает большие возможности для сравнительного анализа результатов работы НГДУ, поставленных в различные производственные условия, выявления факторов, обеспечивающих достижение высокой производительности в передовых НГДУ и, наоборот. Анализ расчетных значений производительности труда Z/P , определенных по уравнениям регрессии, показывает,  [c.89]

Зная величину Эу для каждого фактора, можно оценить возможный рост (падение) производительности труда за счет изменения отдельных факторов. Так, если нам известно, что изменение дебита скважин на 1 % приводит к изменению производительности труда на k %, то, зная величину изменения указанного фактора в планируемом периоде, можно рассчитать ожидаемый уровень производительности труда. Так как уравнения регрессии (20) — (22) выражают зависимость производительности труда от основных факторов не по каждому НГДУ, а в среднем по выборочной совокупности их, то прогнозируемые значения производительности труда целесообразно рассчитывать по формулам (20) — (22) лишь в отраслевом масштабе для отдельных групп НГДУ с растущей, стабильной или падающей добычей.  [c.145]

Определение взаимосвязи вида У/ / связано как с проведением большого количества вычислительных операций, так и с рпределением большого количества статистических парамет— ров позволяющих производить анализ и отбор наиболее значимых факторов и уравнений регрессии. Поэтому расчеты целесообразно проводить на ЭВМ.  [c.22]

В связи с этим, в частности, автором статьи разработана специальная программа POL / » на алгоритмическом языке Фортран-1У, реализующая регрессионную модель (4). Особенностью программы является возможность ввода данных с указанием реального масштаба времени, что представляет удобство при проведении расчетов по большой номенклатуре материалов. Это вызвало необходимость разработки подпрограммы, которая осуществляет преобразование года в ро»ицныу Х » 4 -1 ° t. первый год наблюдаемого ряда удельных расходов материалов. В резульг-тате этого преобразования каждое значение X t соответствующее содержится в отрезке (1,7). Коэффициенты уравнения регрессии (7) получаются относительно переменной х. Это дает возможность избежать такой ситуации на  [c.22]

Уравнение регрессии Прогноз нормы на 1981 г. Предложения ВНИИОЭНГ на 1981г. Утвержд. норма на 1981г. Относи ное отк ние  [c.26]

Направление расхода и единица измерения нормы Уравнение регрессии Прогноз нормы на 1981г. Предложения ВНИИОЭНГ на 1981г. Утвержден, норма на 1981г. Относительное отклонение  [c.27]

Корреляция и регрессия

Использование графического метода.
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс — индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции.
На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.

Линейное уравнение регрессии имеет вид y=bx+a+ε
Здесь ε — случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения εi  для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям xi и yi можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т. к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где ei – наблюдаемые значения (оценки) ошибок εi, а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β — используют МНК (метод наименьших квадратов).
Система нормальных уравнений.


Для наших данных система уравнений имеет вид:

10a + 356b = 49
356a + 2135b = 9485

Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 68.16, a = 11.17

Уравнение регрессии:
y = 68.16 x — 11.17

1. Параметры уравнения регрессии.
Выборочные средние.



Выборочные дисперсии.


Среднеквадратическое отклонение

1. 1. Коэффициент корреляции
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 < rxy < 0.3: слабая;
0.3 < rxy < 0.5: умеренная;
0.5 < rxy < 0.7: заметная;
0.7 < rxy < 0.9: высокая;
0.9 < rxy < 1: весьма высокая;
В нашем примере связь между признаком Y фактором X весьма высокая и прямая.

1.2. Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = 68.16 x -11.17
Коэффициентам уравнения линейной регрессии можно придать экономический смысл. Коэффициент уравнения регрессии показывает, на сколько ед. изменится результат при изменении фактора на 1 ед.
Коэффициент b = 68.16 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 68.16.
Коэффициент a = -11.17 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений x, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения x, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и x определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе — обратная). В нашем примере связь прямая.

1.3. Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета — коэффициенты. Коэффициент эластичности находится по формуле:


Он показывает, на сколько процентов в среднем изменяется результативный признак у при изменении факторного признака х на 1%. Он не учитывает степень колеблемости факторов.
В нашем примере коэффициент эластичности больше 1. Следовательно, при изменении Х на 1%, Y изменится более чем на 1%. Другими словами — Х существенно влияет на Y.
Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

Т. е. увеличение x на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего Y на 0.9796 среднеквадратичного отклонения этого показателя.

1.4. Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.


Поскольку ошибка больше 15%, то данное уравнение не желательно использовать в качестве регрессии.

1.6. Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R2= 0.982 = 0.9596, т.е. в 95.96 % случаев изменения x приводят к изменению у. Другими словами — точность подбора уравнения регрессии — высокая. Остальные 4.04 % изменения Y объясняются факторами, не учтенными в модели.

xyx2y2x·yy(x)(yi-y) 2(y-y(x))2(xi-x)2|y — yx|:y
0.371 15.6 0.1376 243.36 5.79 14.11 780.89 2.21 0.1864 0.0953
0.399 19.9 0.1592 396.01 7.94 16.02 559.06 15.04 0.163 0.1949
0.502 22.7 0.252 515.29 11.4 23.04 434.49 0. 1176 0.0905 0.0151
0.572 34.2 0.3272 1169.64 19.56 27.81 87.32 40.78 0.0533 0.1867
0.607 44.5 .3684 1980.25 27.01 30.2 0.9131 204.49 0.0383 0.3214
0.655 26.8 0.429 718.24 17.55 33.47 280.38 44.51 0.0218 0.2489
0.763 35.7 0.5822 1274.49 27. 24 40.83 61.54 26.35 0.0016 0.1438
0.873 30.6 0.7621 936.36 26.71 48.33 167.56 314.39 0.0049 0.5794
2.48 161.9 6.17 26211.61 402 158.07 14008.04 14.66 2.82 0.0236
7.23 391.9 9.18 33445.25 545.2 391.9 16380.18 662.54 3.38 1.81

2. Оценка параметров уравнения регрессии.
2.1. Значимость коэффициента корреляции.

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=7 находим tкрит:
tкрит = (7;0.05) = 1.895
где m = 1 — количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически — значим
В парной линейной регрессии t2r = t2b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:


S2y = 94.6484 — необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).


Sy = 9.7287 — стандартная ошибка оценки (стандартная ошибка регрессии).
S a — стандартное отклонение случайной величины a.


Sb — стандартное отклонение случайной величины b.

2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения.
Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя.

(a + bxp ± ε)
где
Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X p = 1
(-11.17 + 68.16*1 ± 6.4554)

(50.53;63.44)
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.

Индивидуальные доверительные интервалы для Y при данном значении X.
(a + bx i ± ε)
где


xi y = -11.17 + 68.16xi εi ymin ymax
0.371 14.11 19.91 -5.8 34.02
0. 399 16.02 19.85 -3.83 35.87
0.502 23.04 19.67 3.38 42.71
0.572 27.81 19.57 8.24 47.38
0.607 30.2 19.53 10.67 49.73
0.655 33.47 19.49 13.98 52.96
0.763 40.83 19.44 21.4 60.27
0.873 48.33 19.45 28.88 67.78
2.48 158.07 25. 72 132.36 183.79

С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.

2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
Проверим гипотезу H0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H1 не равно) на уровне значимости α=0.05.
tкрит = (7;0.05) = 1.895


Поскольку 12.8866  >  1.895, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).


Поскольку 2.0914  >  1.895, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).

Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95%  будут следующими:
(b — tкрит Sb; b + tкрит Sb)
(68.1618 — 1.895 • 5.2894; 68.1618 + 1.895 • 5.2894)
(58.1385;78.1852)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a — ta)
(-11.1744 — 1.895 • 5.3429; -11.1744 + 1.895 • 5.3429)
(-21.2992;-1.0496)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.

2) F-статистики. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с lang=EN-US>n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R2=0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:


где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=7, Fkp = 5.59
Поскольку фактическое значение F > Fkp, то коэффициент детерминации статистически значим (Найденная оценка уравнения регрессии статистически надежна).

Проверка на наличие автокорреляции остатков.
Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений   от значений отклонений во всех других наблюдениях. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.
Автокорреляция (последовательная корреляция) определяется как корреляция между наблюдаемыми показателями, упорядоченными во времени (временные ряды) или в пространстве (перекрестные ряды). Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов и очень редко при использовании перекрестных данных.
В экономических задачах значительно чаще встречается положительная автокорреляция, нежели отрицательная автокорреляция. В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов.
Отрицательная автокорреляция фактически означает, что за положительным отклонением следует отрицательное и наоборот. Такая ситуация может иметь место, если ту же зависимость между спросом на прохладительные напитки и доходами рассматривать по сезонным данным (зима-лето).
Среди основных причин, вызывающих автокорреляцию, можно выделить следующие:
1. Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводят к системным отклонениям точек наблюдения от линии регрессии, что может обусловить автокорреляцию.
2. Инерция. Многие экономические показатели (инфляция, безработица, ВНП и т. д.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Поэтому изменение показателей происходит не мгновенно, а обладает определенной инертностью.
3. Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).
4. Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают  усреднением данных по составляющим его интервалам. Это может привести к  определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может служить причиной автокорреляции.
Последствия автокорреляции схожи с последствиями гетероскедастичности: выводы по t- и F-статистикам, определяющие значимость коэффициента регрессии и коэффициента детерминации, возможно, будут неверными.

Обнаружение автокорреляции

1. Графический метод
Есть ряд вариантов графического определения автокорреляции. Один из них увязывает отклонения ei с моментами их получения i. При этом по оси абсцисс откладывают либо время получения статистических данных, либо порядковый номер наблюдения, а по оси ординат – отклонения ei (либо оценки отклонений).
Естественно предположить, что если имеется определенная связь между отклонениями, то автокорреляция имеет место. Отсутствие зависимости скоре всего будет свидетельствовать об отсутствии автокорреляции.
Автокорреляция становится более наглядной, если построить график зависимости ei от ei-1.

Критерий Дарбина-Уотсона.
Этот критерий является наиболее известным для обнаружения автокорреляции.
При статистическом анализе уравнения регрессии на начальном этапе часто проверяют выполнимость одной предпосылки: условия статистической независимости отклонений между собой. При этом проверяется некоррелированность соседних величин ei.

yy(x)ei = y-y(x)e2(ei — ei-1)2
15.6 14.11 1.49 2.21 0
19.9 16.02 3.88 15.04 5.72
22.7 23.04 -0.3429 0.1176 17.81
34.2 27.81 6.39 40.78 45.28
44.5 30.2 14.3 204.49 62.64
26.8 33.47 -6.67 44.51 439.82
35. 7 40.83 -5.13 26.35 2.37
30.6 48.33 -17.73 314.39 158.7
161.9 158.07 3.83 14.66 464.81
662.54 1197.14
Для анализа коррелированности отклонений используют статистику Дарбина-Уотсона:


Критические значения d1 и d2 определяются на основе специальных таблиц для требуемого уровня значимости α, числа наблюдений n = 9 и количества объясняющих переменных m=1.
Автокорреляция отсутствует, если выполняется следующее условие:
d1 < DW и d2 < DW < 4 — d2.
Не обращаясь к таблицам, можно пользоваться приблизительным правилом и считать, что автокорреляция остатков отсутствует, если 1. 5 < DW < 2.5. Для более надежного вывода целесообразно обращаться к табличным значениям.

Решить свою задачу онлайн

страница не найдена — Колледж Уильямс

’62 Центр театра и танца, ’62 Центр
Касса 597-2425
Магазин костюмов 597-3373
Менеджер мероприятий/помощник менеджера 597-4808 597-4815 факс
Производство 597-4474 факс
Магазин сцен 597-2439
’68 Центр изучения карьеры, Мирс 597-2311 597-4078 факс
Академические ресурсы, Парески 597-4672 597-4959 факс
Служба поддержки инвалидов, Парески 597-4672
Приемная, Уэстон Холл 597-2211 597-4052 факс
Позитивные действия, Хопкинс Холл 597-4376
Африканские исследования, Голландия 597-2242 597-4222 факс
Американские исследования, Шапиро 597-2074 597-4620 факс
Антропология и социология, Холландер 597-2076 597-4305 факс
Архив и специальные коллекции, Sawyer 597-4200 597-2929 факс
Читальный зал 597-4200
Искусство (История, Студия), Spencer Studio Art/Lawrence 597-3578 597-3693 факс
Архитектурная студия, Spencer Studio Art 597-3134
Студия фотографии, Spencer Studio Art 597-2030
Студия печати, Spencer Studio Art 597-2496
Скульптурная студия, Spencer Studio Art 597-3101
Senior Studio, Spencer Studio Art 597-3224
Видео/фотостудия, Spencer Studio Art 597-3193
Азиатские исследования, Голландия 597-2391 597-3028 факс
Астрономия/астрофизика, Физика Томпсона 597-2482 597-3200 факс
Отделение легкой атлетики, физического воспитания, отдыха, Ласелл 597-2366 597-4272 факс
Спортивный директор 597-3511
Лодочная пристань, озеро Онота 443-9851
Вагоны 597-2366
Фитнес-центр 597-3182
Хоккейный каток Ice Line, Lansing Chapman 597-2433
Очные, Спортивный центр Чендлера 597-3321
Физкультура 597-2141
Влажная линия бассейна, Спортивный центр Чандлера 597-2419
Информация о спорте, Хопкинс-холл 597-4982 597-4158 факс
Спортивная медицина 597-2493 597-3052 факс
Корты для сквоша 597-2485
Поле для гольфа Taconic 458-3997
Биохимия и молекулярная биология, Биология Томпсона 597-2126
Биоинформатика, геномика и протеомика, Бронфман 597-2124
Биология, Биология Томпсона 597-2126 597-3495 факс
Безопасность и безопасность кампуса, Хопкинс-холл 597-4444 597-3512 факс
Карты доступа/Системы сигнализации 597-4970/4033
Служба сопровождения, Хопкинс-холл 597-4400
Офицеры и диспетчеры 597-4444
Секретарь, удостоверения личности 597-4343
Распределительный щит 597-3131
Центр развития творческого сообщества, 66 Stetson Court 884-0093
Центр экономики развития, 1065 Main St 597-2148 597-4076 факс
Компьютерный зал 597-2522
Вестибюль 597-4383
Центр экологических исследований, выпуск 1966 г. Экологический центр 597-2346 597-3489 факс
Лаборатория наук об окружающей среде, Морли 597-2380
Экологические исследования 597-2346
Лаборатория ГИС 597-3183
Центр иностранных языков, литературы и культуры, Голландия 597-2391 597-3028 факс
Арабистика, Голландия 597-2391 597-3028 факс
Сравнительная литература, Hollander 597-2391
Critical Languages, Hollander 597-2391 597-3028 факс
Лингвистическая лаборатория 597-3260
Русский, голландский 597-2391
Центр обучения в действии, Brooks House 597-4588 597-3090 факс
Библиотека редких книг Чапина, Сойер 597-2462 597-2929 факс
Читальный зал 597-4200
Офис капелланов, Парески 597-2483 597-3955 факс
Еврейский религиозный центр, Stetson Court 24 597-2483
Мусульманская молитвенная комната, часовня Томпсона (нижний уровень) 597-2483
Католическая часовня Ньюмана, часовня Томпсона (нижний уровень) 597-2483
Химия, Томпсон Химия 597-2323 597-4150 факс
Классика (греческая и латинская), голландская 597-2242 597-4222 факс
Когнитивные науки, Бронфман 597-4594
Колледж Маршал, Физика Томпсона 597-2008
Отношения с колледжами 597-4057
25-я программа воссоединения, Фогт 597-4208 597-4039 факс
50-я программа воссоединения, Фогт 597-4284 597-4039 факс
Операции по развитию, Мирс Уэст 597-4154 597-4333 факс
Мероприятия для выпускников, Vogt 597-4146 597-4548 факс
Фонд выпускников 597-4153 597-4036 факс
Отношения с выпускниками, Мирс Уэст 597-4151 597-4178 факс
Почтовые службы для выпускников и разработчиков, Mears West 597-4369
Развитие, Фогт 597-4256
Отношения с донорами, Фогт 597-3234 597-4039 факс
Отдел планирования подарков, Фогт 597-3538 597-4039 факс
Офис грантов, Мирс-Уэст 597-4025 597-4333 факс
Программа крупных подарков, Vogt 597-4256 597-4548 факс
Родительский фонд, фогт 597-4357 597-4036 факс
Prospect Management & Research, Mears 597-4119 597-4178 факс
Начало и академические мероприятия, Jesup 597-2347 597-4435 факс
Коммуникации, Хопкинс Холл 597-4277 597-4158 факс
Информация о спорте, Хопкинс-холл 597-4982 597-4158 факс
Веб-группа, Southworth Schoolhouse
Williams Magazines (ранее Alumni Review), Hopkins Hall 597-4278
Информатика, Химия Томпсона 597-3218 597-4250 факс
Конференции и мероприятия, Парески 597-2591 597-4748 факс
Справки о доме на дереве вяза, ферма Маунт-Хоуп 597-2591
Офис диспетчера, Хопкинс-холл 597-4412 597-4404 факс
Кредиторская задолженность и ввод данных, Hopkins Hall 597-4453
Касса и кассовые чеки, Hopkins Hall 597-4396
Финансовые информационные системы, Хопкинс-холл 597-4023
Карточки для покупок, Хопкинс Холл 597-4413
Студенческие кредиты, Hopkins Hall 597-4683
Танец, ’62 Центр 597-2410
Центр Дэвиса (ранее Мультикультурный центр), Дженнесс 597-3340 597-3456 факс
Харди Хаус 597-2129
Дом Дженнесс 597-3344
Райс Хаус 597-2453
Декан колледжа, Хопкинс-холл 597-4171 597-3507 факс
Декан факультета, Хопкинс Холл 597-4351 597-3553 факс
Обеденные услуги, капельницы 597-2121 597-4618 факс
’82 Гриль, Парески 597-4585
Пекарня, Парески 597-4511
Питание, Факультет 597-2452
Обеденный зал Дрисколла, Дрисколл 597-2238
Эко-кафе, Научный центр 597-2383
Grab ‘n Go, Парески 597-4398
Закусочная Lee, Парески 597-3487
Обеденный зал Mission Park, Mission Park 597-2281
Уитменс, Парески 597-2889
Экономика, Шапиро 597-2476 597-4045 факс
английский, голландский 597-2114 597-4032 факс
Объекты, Сервисное здание объектов 597-2301
Запрос автомобиля для колледжа 597-2302
Вечерние/выходные чрезвычайные ситуации 597-4444
Запросы на работу объектов 597-4141 факс
Особые события 597-4020
Склад 597-2143 597-4013 факс
Клуб факультета, Дом факультета/Центр выпускников 597-2451 597-4722 факс
Бронирование 597-3089
Офис стипендий, Хопкинс Холл 597-3044 597-3507 факс
Финансовая помощь, Weston Hall 597-4181 597-2999 факс
Геофизические науки, Кларк Холл 597-2221 597-4116 факс
немецкий-русский, голландский 597-2391 597-3028 факс
Глобальные исследования, Холландер 597-2247
Высшая программа по истории искусств, The Clark 458-2317 факс
Health and Wellness Services, Thompson Ctr Health 597-2206 597-2982 факс
Санитарное просвещение 597-3013
Услуги комплексного благополучия (консультации) 597-2353
Экстренные ситуации, угрожающие жизни Звоните 911
Медицинские услуги 597-2206
История, Холландер 597-2394 597-3673 факс
История науки, Бронфман 597-4116 факс
Хопкинс Форест 597-4353
Центр Розенбурга 458-3080
Отдел кадров, здание B&L 597-2681 597-3516 факс
Услуги няни, здание B&L 597-4587
Преимущества 597-4355
Программа помощи сотрудникам 800-828-6025
Занятость 597-2681
Расчет заработной платы 597-4162
Ресурсы для супругов/партнеров 597-4587
Трудоустройство студентов 597-4568
Weather Line (ICEY) 597-4239
Гуманитарные науки, Шапиро 597-2076
Информационные технологии, Джесуп 597-2094 597-4103 факс
Пакеты для чтения курсов, почтовый ящик для офисных услуг 597-4090
Центр кредитования оборудования, Додд, приложение 597-4091
Служба поддержки преподавателей/персонала, [email protected] 597-4090
Медиа-услуги и помощь в классе 597-2112
Служба поддержки студентов, [электронная почта защищена] 597-3088
Телекоммуникации/телефоны 597-4090
Междисциплинарные исследования, Hollander 597-2552
Международное образование и обучение вне дома, Хопкинс-холл 597-4262 597-3507 факс
Инвестиционный офис, Хопкинс Холл 597-4447
Офис в Бостоне 617-502-2400 617-426-5784 факс
Еврейские исследования, Мазер 597-3539
Справедливость и право, Холландер 597-2102
Latina/o Studies, Hollander 597-2242 597-4222 факс
Исследования лидерства, Шапиро 597-2074 597-4620 факс
Морские исследования, Бронфман 597-2297
Математика и статистика, Bascom 597-2438 597-4061 факс
Музыка, Бернхард 597-2127 597-3100 факс
Concertline (записанная информация) 597-3146
Неврология, Биология Томпсона 597-4107 597-2085 факс
Центр Окли, Окли 597-2177 597-4126 факс
Управление институционального разнообразия и справедливости, Hopkins Hall 597-4376 597-4015 факс
Счетная палата студентов, Хопкинс Холл 597-4396 597-4404 факс
Исследования производительности, ’62 Центр 597-4366
Философия, Шапиро 597-2074 597-4620 факс
Физика, Физика Томпсона 597-2482 597-4116 факс
Планетарий/Обсерватория Хопкинса 597-3030
Старый театр обсерватории Хопкинса 597-4828
Бронирование 597-2188
Политическая экономия, Шапиро 597-2327
Политология, Шапиро 597-2168 597-4194 факс
Офис президента, Хопкинс-холл 597-4233 597-4015 факс
Дом Президента 597-2388 597-4848 факс
Услуги печати/почты для преподавателей/сотрудников, ’37 House 597-2022
Программа обучения, Бронфман 597-4522 597-2085 факс
Офис проректора, Хопкинс-холл 597-4352 597-3553 факс
Психология, психологические кабинеты и лаборатории 597-2441 597-2085 факс
Недвижимость, здание B&L 597-2195/4238 597-5031 факс
Ипотека преподавателей/сотрудников 597-4238
Аренда жилья для преподавателей/сотрудников 597-2195
Офис ЗАГСа, Хопкинс Холл 597-4286 597-4010 факс
Религия, голландец 597-2076 597-4222 факс
Романские языки, голландский 597-2391 597-3028 факс
Планировщик помещений 597-2555
Соответствие требованиям безопасности и охраны окружающей среды, класс ’37 House 597-3003
Библиотека Сойера, Сойер 597-2501 597-4106 факс
Услуги доступа 597-2501
Приобретение/Серийный номер 597-2506
Услуги каталогизации/метаданных 597-2507
Межбиблиотечный абонемент 597-2005 597-2478 факс
Исследовательские и справочные услуги 597-2515
Стеллаж 597-4955 597-4948 факс
Системы 597-2084
Научная библиотека Шоу, Научный центр 597-4500 597-4600 факс
Научные и технологические исследования, Бронфман 597-2239
Научный центр, Бронфман 597-4116 факс
Магазин электроники 597-2205
Машиностроительный/модельный цех 597-2230
Безопасность 597-4444
Специальные академические программы, Hardy 597-3747 597-4530 факс
Информация о спорте, Хопкинс-холл 597-4982 597-4158 факс
Студенческая жизнь, Парески 597-4747
Планировщик помещений 597-2555
Управление студенческими центрами 597-4191
Планирование студенческих мероприятий 597-2546
Студенческое общежитие, Парески 597-2555
Участие студентов 597-4749
Жилищные программы высшего класса 597-4625
Студенческая почта, Почта Парески 597-2150
Устойчивое развитие/Zilkha Center, Harper 597-4462
Коммутатор, Хопкинс Холл 597-3131
Книжный магазин Уильямс 458-8071 458-0249 факс
Театр, 62 Центр 597-2342 597-4170 факс
Управление траста и недвижимости, Sears House 597-4259
Учебники 597-2580
ПО за Campus Life, Hopkins Hall 597-2044 597-3996 факс
Вице-президент по связям с колледжами, Mears 597-4057 597-4178 факс
Вице-президент по финансам и администрации, Хопкинс Холл 597-4421 597-4192 факс
Центр визуальных ресурсов, Лоуренс 597-2015 597-3498 факс
Детский центр колледжа Уильямс, Детский центр Уильямс 597-4008 597-4889 факс
Художественный музей колледжа Уильямс (WCMA), Лоуренс 597-2429 597-5000 факс
Подготовка музея 597-2426
Безопасность музея 597-2376
Музейный магазин 597-3233
Уильямс Интернэшнл 597-2161
Williams Outing Club, Парески 597-2317
Аппаратная/стол для учащихся 597-4784
Проект Уильямса по экономике высшего образования, Мирс-Уэст 597-2192
Уильямс Рекорд, Парески 597-2400 597-2450 факс
Программа Уильямса-Эксетера в Оксфорде, Оксфордский университет 011-44-1865-512345
Программа Williams-Mystic, Музей морского порта Mystic 860-572-5359 860-572-5329 факс
Женские, гендерные и сексуальные исследования, Шапиро 597-3143 597-4620 факс
Программы написания программ, Hopkins Hall 597-4615
Центр экологических инициатив Зилха, Харпер 597-4462

Краткая иллюстрация регрессионного анализа в экономике

Айла Мирик

ист Артур Окунь в 1960-х .

Краткая история

Артур Окун был председателем Совета экономических консультантов президента Кеннеди в начале 1960-х годов. В начале 19 века экономика США находилась в разгаре рецессии.60-х годов после длительного периода расширения после Второй мировой войны. Одной из главных целей Окуна было убедить политиков в том, что федеральному правительству необходимо перейти к действиям и принять агрессивную кейнсианскую политику управления спросом для стимулирования роста. Окун сосредоточился на высокой цене более низкого реального объема производства из-за более высокой безработицы, чтобы убедить политиков.

Основываясь на квартальных данных за 1947-1960 гг., Окун обнаружил сильную линейную и отрицательную зависимость между процентными изменениями уровня безработицы и процентными изменениями реального валового национального продукта (ВНП). В его оригинале 1962, Окун определил это как метод первых разностей и подогнал регрессионную модель, используя 55 ежеквартальных наблюдений со второго квартала 1947 г. по четвертый квартал 1960 г. Как представлено в его статье, модель имеет вид

была его относительная простота («для производства большего количества товаров и услуг в экономике обычно требуется больше труда» (Knotek)), сильная корреляция между двумя переменными с r = 0,79 и использование доступных данных для двух ключевых макроэкономических переменных. Согласно исходной регрессионной модели, рост реального объема производства на 1% в данном квартале был связан со снижением уровня безработицы на 0,30 процентного пункта в этом квартале.

Воспроизведение модели Оукена

Давайте посмотрим, сможем ли мы воспроизвести первоначальные выводы Оукена, используя данные того же исторического периода. Экономические данные легко доступны для общественности через различные базы данных федерального правительства, но экономические данные могут подвергаться многочисленным изменениям. Поэтому было важно найти данные, которые Окун использовал бы в 1962 году. Данные о безработице были найдены в апрельских выпусках «Обзора текущей деятельности» за 1960 и 1961 годы, опубликованных Бюро статистики труда. Реальный выпуск ВНП может подвергаться множеству пересмотров и может меняться в зависимости от базового года или показателя, взвешенного по цепочке. Лучшим источником данных о реальном ВНП было Бюро экономического анализа США. Исходные данные представлены в приложении.

Затем была проведена обычная регрессия методом наименьших квадратов так же, как Окуном в 1962 году. В таблице 1 представлены результаты повторной модели с добавлением нескольких дополнительных статистических показателей: Окунь сообщил в 1962 году. Небольшие различия могут быть результатом различий в округлении. Поскольку безработица сообщается ежемесячно, я также беру средний процент безработицы за три квартала, чтобы получить квартальный уровень безработицы, а затем беру разницу между двумя средними значениями. И пересечение, и изменение коэффициента реального ВНП значимы на уровне значимости 0,00. Также отмечается, что коэффициент корреляции (r) между двумя переменными составляет 0,76, что близко соответствует коэффициенту Оукена 0,79.уровень. Значение p из F-теста в таблице 1 очень близко к 0 и показывает статистически значимое соответствие модели данным.

Резюме

Закон Оукена описывает отрицательную связь между безработицей и реальным выпуском в экономике США. Соотношение по-прежнему используется сегодня для прогнозирования изменений в безработице с учетом уровня роста реального объема производства, а также для прогнозирования соответствующего уровня ставки овернайт по федеральным фондам.

Окун также изменил направление модели, чтобы определить соответствующий прогноз роста реального объема производства с учетом изменения уровня безработицы.

Коэффициент 3,3 (т. е. величина, обратная исходной оценке коэффициента 0,30) был назван коэффициентом Оукена для безработицы. Согласно этой версии модели, «увеличение уровня безработицы на один процентный пункт означает уменьшение ВНП на 3,3%» (Окун, 1962). Недавняя работа показала, что простое использование обратной величины коэффициента для расчета коэффициента безработицы Оукена приводит к необъективным оценкам (Barreto and Howland, 1993). Правильный способ оценки несмещенного коэффициента Окуна по безработице состоит в том, чтобы фактически провести обратную регрессию роста реального объема производства по изменению уровня безработицы. Выполнение регрессии данных в этом направлении приводит к уравнению

Таким образом, согласно этим оценкам, увеличение уровня безработицы на один процентный пункт означает падение реального ВНП ближе к 2% по сравнению с предполагаемым падением объема производства на 3,3%.
Это будет обсуждаться более подробно в последующем анализе, когда закон Оукена оценивается с использованием текущих данных.

Ресурсы

www.bls.gov
www.bea.gov

Баррето, Умберто и Фрэнк Хауленд, 1993 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *