Теории о происхождении вселенной: Происхождение Вселенной: 7 различных теорий

Содержание

Происхождение Вселенной: 7 различных теорий

Как появилась Вселенная, которую мы знаем? И как мы объясним ее происхождение? Несомненно, все остальные свидетельства и данные, собранные за эти годы космологами, указывают на то, что все это могло начаться с "большого взрыва". Но что, если есть еще?

В 1927 году бельгийский астроном Жорж Леметр стал первым, кто предложил теорию расширяющейся Вселенной (позже подтвержденную Эдвином Хабблом). Он предположил, что расширяющаяся Вселенная может быть прослежена до особой точки, которую он назвал "первичным атомом", назад во времени. Это заложило основу современной теории Большого Взрыва.

Что такое теория большого взрыва?

Теория Большого взрыва - это объяснение, основанное в основном на математических моделях, того, как и когда возникла Вселенная.

Космологическая модель Вселенной, описанная в теории Большого взрыва, объясняет, как она первоначально расширилась из состояния бесконечной плотности и температуры, известного как изначальная (или гравитационная) сингулярность. За этим расширением последовала космическая инфляция и резкое падение температуры. Во время этой фазы Вселенная раздувалась с гораздо большей скоростью, чем скорость света (в 10

26раз).

Впоследствии Вселенная была разогрета до такой степени, что элементарные частицы (кварки, лептоны и так далее) до постепенного понижения температуры (и плотности) привели к образованию первых протонов и нейтронов.

Через несколько минут после расширения протоны и нейтроны объединяются, образуя первичные ядра водорода и гелия-4. Предполагаемый радиус наблюдаемой Вселенной в течение этой фазы составлял 300 световых лет. Первые звезды и галактики появились примерно через 400 миллионов лет после этого события.

Важнейшим элементом модели Большого Взрыва является космическое сверхвысокочастотное фоновое излучение (Реликтовое излучение), представляющий собой электромагнитное излучение, оставшееся со времен зарождения Вселенной. Реликтовое излучение остается самым убедительным доказательством большого взрыва.

Хотя теория остается широко признанной во всем научном спектре, несколько альтернативных объяснений - таких, как стационарная Вселенная и вечная инфляция, приобрели привлекательность с годами.

7. Теория вечной инфляции

Понятие инфляции было введено космологом Аланом Гутом в 1979 году, чтобы объяснить, почему Вселенная плоская, чего не хватало в первоначальной теории Большого взрыва.

Хотя идея Гута об инфляции объясняет плоскую Вселенную, она создала сценарий, который не позволяет Вселенной избежать этой инфляции. Если бы это было так, не произошло бы повторного нагрева Вселенной, равно как и образования звезд и галактик.

Эта конкретная проблема была решена Андреасом Альбрехтом и Полем Штайнхардтом в их «новой инфляции». Они утверждали, что быстрое расширение Вселенной произошло всего за несколько секунд, прежде чем прекратиться. Он продемонстрировал, как Вселенная может быстро раздуваться и при этом нагреваться.

Концепция «вечной инфляции», или теория хаотической инфляции, была введена Андреем Линде, профессором Стэнфордского университета. Он был основан на предыдущих работах Штейнхардта и Александра Виленкина.

Теория утверждает, что инфляционная фаза Вселенной продолжается вечно; это не конец для Вселенной в целом. Другими словами, космическая инфляция продолжается в одних частях Вселенной и прекращается в других. Это приводит к сценарию мультивселенной, в котором пространство разбивается на пузыри. Это как вселенная внутри вселенной.

В мультивселенной в разных вселенных могут действовать разные законы природы, физики. Итак, вместо единого расширяющегося космоса наша Вселенная могла бы быть инфляционной мультивселенной с множеством маленьких вселенных с различными свойствами.

Однако Пол Стейнхардт считает, что его теория «новой инфляции» ни к чему не приводит и не предсказывает, и утверждает, что понятие мультивселенной является «фатальным недостатком» и неестественным.

6. Конформная циклическая модель

Роджер Пенроуз, 6 ноября 2005 года

Модель конформной циклической космологии (англ. conformal cyclic cosmology или CCC) предполагает, что Вселенная проходит через повторяющиеся циклы большого взрыва и последующих расширений. Общая идея состоит в том, что "большой взрыв" был не началом Вселенной, а скорее переходной фазой. Его разработал физик-теоретик и математик Роджер Пенроуз.

В качестве основы для своей модели Пенроуз использовал множественные метрические последовательности FLRW (Фридмана – Лемэтра – Робертсона – Уокера). Он утверждал, что конформная граница одной последовательности FLRW может быть присоединена к границе другой.

Метрика FLRW - это наиболее близкое приближение к природе Вселенной и часть модели Лямбда-CDM. Каждая последовательность начинается с большого взрыва, за которым следует инфляция и последующее расширение.

Циклическая или осциллирующая модель, в которой Вселенная повторяется снова и снова в неопределенном цикле, впервые оказалась в центре внимания в 1930-х годах, когда Альберт Эйнштейн исследовал идею «вечной» Вселенной. Он считал, что по достижении определенной точки Вселенная начинает коллапсировать и заканчивается Большим хрустом перед тем, как пройти через Большой отскок.

Прямо сейчас существует четыре различных варианта циклической модели Вселенной, одна из которых - конформная циклическая космология.

5. Мираж четырехмерной черной дыры

Исследование, проведенное группой исследователей в 2013 году, предположило, что наша Вселенная могла возникнуть из обломков, выброшенных из коллапсировавшей четырехмерной звезды или черной дыры.

По мнению космологов, участвовавших в исследовании, одно из ограничений теории Большого взрыва - объяснение температурного равновесия, обнаруженного во Вселенной.

Хотя большинство ученых согласны с тем, что инфляционная теория дает адекватное объяснение того, как маленький участок с однородной температурой быстро расширится и превратится во Вселенную, которую мы наблюдаем сегодня, группа сочла это неправдоподобным в силу хаотичной природы Большого взрыва.

Для решения этой проблемы команда предложила модель космоса, в которой наша трехмерная Вселенная является мембраной и плавает внутри четырехмерной "объемной вселенной". Они утверждали, что если в четырехмерной "объемной вселенной" есть четырехмерные звезды, то, скорее всего, они обрушатся в четырехмерные черные дыры. Эти четырехмерные черные дыры будут иметь трехмерный горизонт событий (точно так же, как трехмерные имеют двухмерный горизонт событий), который они назвали "гиперсферой".

Когда команда смоделировала коллапс 4-D звезды, они обнаружили, что выброшенные обломки умирающей звезды, скорее всего, образуют 3-D мембрану вокруг этого 3-мерного горизонта событий. Наша Вселенная могла бы быть одной из таких мембран.

Модель "четырехмерной черной дыры" космоса действительно объясняет, почему температура во Вселенной почти равномерна. Она также может дать ценную информацию о том, что именно спровоцировало космическую инфляцию через несколько секунд после ее возникновения. Однако недавнее наблюдение, проведенное спутником Planck ЕКА, выявило небольшие вариации температуры космического микроволнового фона (CMB). Эти спутниковые показания отличаются от предложенной модели примерно на четыре процента.

4. Теория плазменной Вселенной

На наше нынешнее понимание Вселенной в основном влияет гравитация, в частности Общая теория относительности Эйнштейна, с помощью которой космологи объясняют природу Вселенной. По совпадению, как и большинство других вещей, ученые на протяжении многих лет рассматривали альтернативу гравитации.

Космология плазмы (или теория плазменной Вселенной) предполагает, что электромагнитные силы и плазма играют очень важную роль во Вселенной вместо гравитации. Хотя у этого подхода много разных вариантов, основная идея остается той же; каждое астрономическое тело, включая Солнце, звезды и галактики, является результатом какого-либо электрического процесса.

Первая выдающаяся теория плазменной Вселенной была предложена лауреатом Нобелевской премии Ханнесом Альвеном в конце 1960-х годов. Позже к нему присоединился шведский физик-теоретик Оскар Клейн для разработки модели Альфвена – Клейна.

Модель построена на предположении, что Вселенная поддерживает равные количества материи и антивещества (это не так, согласно современной физике элементарных частиц). Границы этих двух областей отмечены космическими электромагнитными полями. Таким образом, взаимодействие между ними приведет к образованию плазмы, которую Альфвен назвал «амбиплазмой».

Согласно теории, такая плазма должна образовывать большие участки вещества и антивещества по всей Вселенной. Кроме того, было высказано предположение, что наше текущее местоположение в космосе должно быть в той части, где материи гораздо больше, чем антивещества, - таким образом решается проблема асимметрии материи и антивещества.

3. Теория медленного замораживания


Десятилетия математического моделирования и исследований привели космологов к обоснованному выводу, что наша Вселенная возникла из одной точки с бесконечной плотностью и температурой, называемой сингулярностью. Последующее расширение Космоса позволило ему остыть, что привело к образованию галактик, звезд и других астрономических объектов.
Однако, как мы знаем, стандартная модель Большого взрыва не осталась незамеченной, и одна из таких сложных теорий была предложена Кристофом Веттерихом, профессором Гейдельбергского университета в Германии.

Веттерих утверждал, что Вселенная, которую мы знаем сегодня, на самом деле могла начаться как холодная и разреженная, пробудившаяся от долгого замораживания. Со временем фундаментальные частицы в ранней Вселенной стали тяжелее, а гравитационная постоянная уменьшилась.

Кроме того, он объяснил, что если массы частиц увеличиваются, излучение из ранней Вселенной может заставить пространство казаться более горячим и удаляться друг от друга, даже если это не так.

Основная идея космической модели Медленного Замораживания Веттериха состоит в том, что у Вселенной нет ни начала, ни будущего. Вместо горячего Большого взрыва теория защищает холодную и медленно эволюционирующую Вселенную. Согласно Веттериху, теория объясняет флуктуации плотности в ранней Вселенной (первичные флуктуации) и то, почему в нашем нынешнем космосе преобладает темная энергия.

2. Индуистская космология

Религия и наука были лучшими врагами, по крайней мере со времен Коперника и Галилея. Возможно, нет места науке, когда мы говорим о религии и наоборот. Однако есть одна религия, космологические верования которой хорошо согласуются с современной моделью Вселенной.

Теории творения в индуистской мифологии широко рассматриваются как одна из самых древних и значимых из всех других религиозных аналогий. На протяжении многих лет выдающиеся физики и космологи, включая Карла Сагана и Нильса Бора, восхищались индуистскими космологическими верованиями за их близкое сходство с временными линиями в стандартной космологической модели Вселенной.

Согласно индуистской мифологии, Вселенная следует бесконечной циклической модели. Это означает, что на смену нашей нынешней Вселенной придет бесконечное количество вселенных. Каждая повторение Вселенной делится на две фазы - "калпа" (или день Брахмы) и "пралая" (ночь Брахмы), и каждая из них длится 4,32 миллиарда лет. Согласно индуистской мифологии, возраст Вселенной (8,64 миллиарда лет) превышает расчетный возраст Солнечной системы.

1. Стационарная Вселенная

Стационарная модель утверждает, что наблюдаемая Вселенная остается неизменной в любом месте и в любое время. Во Вселенной, которая вечно расширяется, материя непрерывно создается, чтобы заполнить пространство.

Согласно модели, галактики и другие крупные астрономические тела рядом с нами должны казаться похожими на те, что находятся далеко. Однако Большой взрыв говорит нам, что далекие галактики должны выглядеть моложе, чем находящиеся в непосредственной близости (при наблюдении с Земли), поскольку свету требуется гораздо больше времени, чтобы добраться до нас.

Идея стационарного состояния была впервые предложена в 1948 году космологами Германом Бонди, Фредом Хойлом и Томасом Голдом. Она исходила из совершенного космологического принципа, который сам по себе утверждает, что Вселенная, где бы ты ни смотрел, одинакова, и она всегда будет одинаковой.

Теория стационарных состояний получила широкую популярность в начале и середине XX века. Однако к 1960-м годам она была в основном отвергнута научным сообществом в пользу Большого взрыва после открытия космического микроволнового фона.

6 альтернатив теории Большого взрыва — Look At Me

Теория Большого взрыва стала почти такой же общепринятой космологической моделью, как и вращение Земли вокруг Солнца. Согласно теории, около 14 млрд лет назад спонтанные колебания в абсолютной пустоте привели к появлению Вселенной. Нечто, сравнимое по размеру с субатомной частицей, расширилось до невообразимых размеров за доли секунды. Но в этой теории существует много проблем, над которыми бьются физики, выдвигая всё новые и новые гипотезы.

Что не так с теорией Большого взрыва

  Из теории следует, что все планеты и звёзды образовались из пыли, размётанной по космосу в результате взрыва. Но что предшествовало ему, неясно: здесь наша математическая модель пространства-времени перестаёт работать. Вселенная возникла из начального сингулярного состояния, к которому не применить современную физику. Теория также не рассматривает причины возникновения сингулярности или материи и энергии для её возникновения. Считается, что ответ на вопрос о существовании и происхождении начальной сингулярности даст теория квантовой гравитации.

  Большинство космологических моделей предсказывают, что полная Вселенная имеет размер намного больший, чем наблюдаемая часть — сферическая область с диаметром примерно 90 млрд световых лет. Мы видим только ту часть Вселенной, свет от которой успел достичь Земли за 13,8 млрд лет. Но телескопы становятся всё лучше, мы обнаруживаем всё более дальние объекты, и пока нет оснований считать, что этот процесс остановится.

  С момента Большого взрыва Вселенная расширяется с ускорением. Сложнейшая загадка современной физики — вопрос о том, что вызывает ускорение. Согласно рабочей гипотезе, во Вселенной содержится невидимая составляющая, называемая «тёмной энергией». Теория Большого взрыва не объясняет, будет ли Вселенная расширяться бесконечно, и если да, то к чему это приведёт — к её исчезновению или чему-то ещё.

  Хотя ньютоновскую механику потеснила релятивистская физика, её нельзя назвать ошибочной. Тем не менее восприятие мира и модели для описания Вселенной полностью изменились. Теория Большого взрыва предсказала ряд вещей, которые не были известны до того. Таким образом, если на её место придёт другая теория, то она должна быть похожей и расширить понимание мира.

Мы остановимся на самых интересных теориях, описывающих альтернативные модели Большого взрыва.

Вселенная как мираж чёрной дыры

Вселенная возникла благодаря коллапсу звезды в четырёхмерной Вселенной, считают учёные из Института теоретической физики «Периметр». Результаты их исследования опубликовал журнал Scientific American. Ниайеш Афшорди, Роберт Манн и Рази Пурхасан говорят, что наша трёхмерная Вселенная стала подобием «голографического миража» при схлопывании четырёхмерной звезды. В отличие от теории Большого взрыва, согласно которой Вселенная возникла из чрезвычайно горячего и плотного пространства-времени, где не применяются стандартные законы физики, новая гипотеза о четырёхмерной вселенной объясняет как причины зарождения, так и её стремительного расширения

Согласно сценарию, сформулированному Афшорди и его коллегами, наша трёхмерная Вселенная — это своеобразная мембрана, которая плывёт сквозь ещё более объёмную вселенную, существующую уже в четырёх измерениях. Если бы в этом четырёхмерном космосе существовали свои четырёхмерные звёзды, они бы тоже взрывались, как и трёхмерные в нашей Вселенной. Внутренний слой становился бы чёрной дырой, а внешний выбрасывался бы в пространство.

В нашей Вселенной чёрные дыры окружены сферой, называемой горизонтом событий. И если в трёхмерном пространстве эта граница двухмерная (как мембрана), то в четырёхмерной вселенной горизонт событий будет ограничен сферой, существующей в трёх измерениях. Компьютерное моделирование коллапса четырёхмерной звезды показало, что её трёхмерный горизонт событий будет постепенно расширяться. Именно это мы и наблюдаем, называя рост 3D-мембраны расширением Вселенной, полагают астрофизики.

 

Большая заморозка

Альтернативой Большому взрыву может быть Большая заморозка. Команда физиков из Мельбурнского университета во главе с Джеймсом Кватчем представила модель рождения Вселенной, которая больше напоминает постепенный процесс заморозки аморфной энергии, чем её выплеск и расширение в трёх направлениях пространства.

Бесформенная энергия, по мнению учёных, подобно воде охладилась до кристаллизации, создав привычные три пространственных и одно временное измерение.

Теория Большой заморозки ставит под сомнение принятое в настоящее время утверждение Альберта Эйнштейна о непрерывности и плавности пространства и времени. Не исключено, что пространство имеет составные части — неделимые стандартные блоки наподобие крошечных атомов или пикселей в компьютерной графике. Эти блоки настолько малы, что их невозможно наблюдать, однако, следуя новой теории, можно обнаружить дефекты, которые должны преломлять потоки других частиц. Учёные вычислили такие эффекты с помощью математического аппарата, а теперь попытаются обнаружить их экспериментально.

Вселенная без начала и конца

Ахмед Фараг Али из Университета Бенха в Египте и Саурия Дас из Университета Летбриджа в Канаде предложили новое решение проблему сингулярности, отказавшись от Большого взрыва. Они привнесли в уравнение Фридмана, описывающее расширение Вселенной и Большой взрыв, идеи известного физика  Дэвида Бома. «Удивительно, что небольшие поправки потенциально могут решить так много вопросов», — говорит Дас.

Полученная модель объединила в себе общую теорию относительности и квантовую теорию. Она не только отрицает сингулярность, предшествовавшую Большому взрыву, но и не допускает того, что Вселенная со временем сожмётся обратно в первоначальное состояние. Согласно полученным данным, Вселенная имеет конечный размер и бесконечное время жизни. В физическом выражении модель описывает Вселенную, наполненную гипотетической квантовой жидкостью, которая состоит из гравитонов — частиц, обеспечивающих гравитационное взаимодействие.

Учёные также утверждают, что их выводы соотносятся с последними результатами измерения плотности Вселенной.

Бесконечная хаотическая инфляция

Термин «инфляция» обозначает стремительное расширение Вселенной, происходившее по экспоненте в первые мгновения после Большого взрыва. Сама по себе теория инфляции не опровергает теорию Большого взрыва, а лишь по-другому интерпретирует её. Эта теория решает несколько фундаментальных проблем физики.

Согласно инфляционной модели, вскоре после зарождения Вселенная очень короткое время расширялась по экспоненте: её размер многократно удваивался. Учёные полагают, что за 10 в -36 степени секунд Вселенная увеличилась в размерах как минимум в 10 в 30–50 степени раз, а возможно, и больше. В конце инфляционной фазы Вселенная заполнилась сверхгорячей плазмой из свободных кварков, глюонов, лептонов и высокоэнергетичных квантов.

Концепция подразумевает, что в мире существует множество изолированных друг от друга вселенных с разным устройством

Физики пришли к выводу, что логика инфляционной модели не противоречит идее постоянного множественного рождения новых вселенных. Квантовые флуктуации — такие же, как те, из-за которых появился наш мир — могут возникать в любом количестве, если для этого есть подходящие условия. Вполне возможно, что наше мироздание вышло из флуктуационной зоны, сформировавшейся в мире-предшественнике. Можно также допустить, что когда-нибудь и где-нибудь в нашей Вселенной образуется флуктуация, которая «выдует» юную вселенную совершенно другого рода. По такой модели дочерние вселенные могут отпочковываться непрерывно. При этом вовсе не обязательно, что в новых мирах устанавливаются одни и те же физические законы. Концепция подразумевает, что в мире существует множество изолированных друг от друга вселенных с разным устройством.

Циклическая теория

Пол Стейнхардт, один из физиков, заложивших основы инфляционной космологии, решил развить эту теорию и дальше. Учёный, который возглавляет Центр теоретической физики в Принстоне, совместно с Нэйлом Тьюроком из Института теоретической физики «Периметр» изложил альтернативную теорию в книге Endless Universe: Beyond the Big Bang («Бесконечная Вселенная: За гранью Большого взрыва»). Их модель основана на обобщении теории квантовых суперструн, известной как М-теория. Согласно ей, физический мир имеет 11 измерений — десять пространственных и одно временное. В нём «плавают» пространства меньших размерностей, так называемые браны (сокращение от «мембраны»). Наша Вселенная — просто одна из таких бран.

Модель Стейнхардта и Тьюрока утверждает, что Большой взрыв произошёл в результате столкновения нашей браны с другой браной — неизвестной нам вселенной. По этому сценарию столкновения происходят бесконечно. Согласно гипотезе Стейнхардта и Тьюрока, рядом с нашей браной «плавает» ещё одна трёхмерная брана, отделённая крошечным расстоянием. Она также расширяется, уплощается и пустеет, но через триллион лет браны начнут сближаться и в конце концов столкнутся. При этом выделится огромное количество энергии, частиц и излучения. Этот катаклизм запустит очередной цикл расширения и охлаждения Вселенной. Из модели Стейнхардта и Тьюрока следует, что эти циклы были и в прошлом и обязательно повторятся в будущем. С чего эти циклы начались, теория умалчивает.

Вселенная


как компьютер

Ещё одна гипотеза об устройстве мироздания гласит, что весь наш мир — это не более чем матрица или компьютерная программа. Идею о том, что Вселенная представляет собой цифровой компьютер, впервые выдвинул немецкий инженер и пионер компьютеростроения Конрад Цузе в книге Calculating Space («Вычислительное пространство»). Среди тех, кто также рассматривал Вселенную как гигантский компьютер, значатся физики Стивен Вольфрам и Герард 'т Хоофт.

Теоретики цифровой физики предполагают, что Вселенная — по сути информация, и, следовательно, она вычислима. Из этих предположений следует, что Вселенную можно рассматривать как результат работы компьютерной программы или цифрового вычислительного устройства. Этот компьютер может быть, например, гигантским клеточным автоматом или универсальной машиной Тьюринга.

Косвенным доказательством виртуальной природы Вселенной называют принцип неопределённости в квантовой механике

Согласно теории, всякий предмет и событие физического мира происходит из постановки вопросов и регистрации ответов «да» или «нет». То есть за всем, что нас окружает, скрывается некий код, аналогичный бинарному коду компьютерной программы. А мы — своего рода интерфейс, с помощью которого появляется доступ к данным «вселенского интернета». Косвенным доказательством виртуальной природы Вселенной называют принцип неопределённости в квантовой механике: частицы материи могут существовать в неустойчивой форме, а «закрепляются» в конкретном состоянии только при наблюдении за ними.

Последователь цифровой физики Джон Арчибальд Уилер писал: «Не было бы неразумным представить, что информация находится в ядре физики так же, как в ядре компьютера. Всё из бита. Иными словами, всё сущее — каждая частица, каждое силовое поле, даже сам пространственно-временной континуум — получает свою функцию, свой смысл и, в конечном счёте, само своё существование».

фотографии via NASA's Marshall Space Flight Center, Øyvind Tufto

Ученые подтвердили, что до нашей Вселенной существовало еще что-то

https://ria.ru/20200730/1575151429.html

Ученые подтвердили, что до нашей Вселенной существовало еще что-то

Ученые подтвердили, что до нашей Вселенной существовало еще что-то - РИА Новости, 31.07.2020

Ученые подтвердили, что до нашей Вселенной существовало еще что-то

Американские ученые с помощью математических инструментов описали неоднородности реликтового космического излучения, возникшего непосредственно после зарождения РИА Новости, 31.07.2020

2020-07-30T11:11

2020-07-30T11:11

2020-07-31T09:14

наука

теория большого взрыва

физика

открытия - риа наука

космос - риа наука

/html/head/meta[@name='og:title']/@content

/html/head/meta[@name='og:description']/@content

https://cdn23.img.ria.ru/images/152176/23/1521762391_0:52:1224:741_1920x0_80_0_0_8ffc5fd9c16abfeef40937f2c0ccba93.jpg

МОСКВА, 30 июл — РИА Новости. Американские ученые с помощью математических инструментов описали неоднородности реликтового космического излучения, возникшего непосредственно после зарождения Вселенной. Авторы считают, что их результаты подтверждают правильность гипотезы Большого отскока, согласно которой возникновение нашей Вселенной стало результатом распада некой "предыдущей" вселенной. Результаты опубликованы в журнале Physical Review Letters.В то время как теория общей относительности Эйнштейна объясняет широкий спектр астрофизических и космологических явлений, некоторые свойства Вселенной остаются загадкой. В частности, она не может объяснить неравномерность распределения в пространстве галактик и темной материи. Сотрудники Университета штата Пенсильвания начиная с 1980-х годов разрабатывают космологическую парадигму, основанную на представлении о петлевой квантовой гравитации. Эта парадигма, получившая название петлевой квантовой космологии, описывает все современные крупные структуры во Вселенной как квантовые флуктуации пространства-времени, имевшие место при рождении мира.Согласно общепринятой теории Большого взрыва, все началось с сингулярности — состояния, в котором вся материя и энергия были сжаты в одну точку. Затем, в первые доли секунды, в период, называемый инфляцией, космос раздулся до огромных размеров. Но теория Большого взрыва не объясняет, что было до сингулярности, поэтому это состояние невозможно описать с точки зрения законов физики и математики.Ученые из Университета штата Пенсильвания придерживаются альтернативной гипотезы Большого отскока, согласно которой текущая расширяющаяся Вселенная возникла из сверхсжатой массы вселенной предыдущей фазы. Для описания этого состояния они используют универсальный математический аппарат, объединяющий квантовую механику и теорию относительности. Происхождение структуры Вселенной авторы прослеживают до мельчайших неоднородностей, фиксируемых на фоне сверхвысокочастотного реликтового космического излучения, которое было испущено, когда Вселенной было всего 380 тысяч лет. Но само это излучение обладает тремя загадочными аномалиями, которые трудно объяснить с помощью классической физики. Эти отклонения настолько серьезные, что многие физики начали говорить о кризисе в космологии. В новом исследовании ученые доказывают, что с точки зрения петлевой квантовой космологии описание инфляции устраняет две основные аномалии в распределении реликтового излучения."Используя космологию квантовой петли, мы естественным образом разрешили две из этих аномалий, что позволяет избежать потенциального кризиса, — приводятся в пресс-релизе университета слова одного из авторов исследования Чон Дон Хи (Donghui Jeong), доцента кафедры астрономии и астрофизики. — Присутствие этих аномалий говорит о том, что мы живем в исключительной Вселенной".Авторы считают, что неоднородности реликтового излучения являются результатом неизбежных квантовых флуктуаций в ранней Вселенной. Во время ускоренной фазы расширения — инфляции — эти изначально крошечные флуктуации растягивались под воздействием силы тяжести, отражаясь в наблюдаемых неоднородностях."Стандартная инфляционная парадигма, основанная на общей теории относительности, рассматривает пространство-время как гладкий континуум, — говорит первый автор работы, профессор Абхай Аштекар (Abhay Ashtekar), директор Института гравитации и космоса штата Пенсильвания. — Ткань рубашки тоже выглядит как двухмерная поверхность, но при ближайшем рассмотрении вы можете увидеть, что она соткана из плотно упакованных одномерных нитей. Так и в ткань пространства-времени вплетены квантовые нити. Учитывая эти нити, петлевая квантовая космология позволяет нам выйти за пределы континуума, описываемого общей теорией относительности". Ученые надеются, что новые спутниковые миссии, такие как LiteBIRD и Cosmic Origins Explorer, нацеленные на обнаружение следов первичных гравитационных волн на фоне реликтового излучения, подтвердят их выводы.

https://ria.ru/20200228/1565310976.html

https://ria.ru/20190712/1556438229.html

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2020

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdn25.img.ria.ru/images/152176/23/1521762391_84:0:1140:792_1920x0_80_0_0_ef706c64dabeaf9e130102eb73595730.jpg

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

теория большого взрыва, физика, открытия - риа наука, космос - риа наука

МОСКВА, 30 июл — РИА Новости. Американские ученые с помощью математических инструментов описали неоднородности реликтового космического излучения, возникшего непосредственно после зарождения Вселенной. Авторы считают, что их результаты подтверждают правильность гипотезы Большого отскока, согласно которой возникновение нашей Вселенной стало результатом распада некой "предыдущей" вселенной. Результаты опубликованы в журнале Physical Review Letters.В то время как теория общей относительности Эйнштейна объясняет широкий спектр астрофизических и космологических явлений, некоторые свойства Вселенной остаются загадкой. В частности, она не может объяснить неравномерность распределения в пространстве галактик и темной материи. Сотрудники Университета штата Пенсильвания начиная с 1980-х годов разрабатывают космологическую парадигму, основанную на представлении о петлевой квантовой гравитации. Эта парадигма, получившая название петлевой квантовой космологии, описывает все современные крупные структуры во Вселенной как квантовые флуктуации пространства-времени, имевшие место при рождении мира.

Согласно общепринятой теории Большого взрыва, все началось с сингулярности — состояния, в котором вся материя и энергия были сжаты в одну точку. Затем, в первые доли секунды, в период, называемый инфляцией, космос раздулся до огромных размеров. Но теория Большого взрыва не объясняет, что было до сингулярности, поэтому это состояние невозможно описать с точки зрения законов физики и математики.

Ученые из Университета штата Пенсильвания придерживаются альтернативной гипотезы Большого отскока, согласно которой текущая расширяющаяся Вселенная возникла из сверхсжатой массы вселенной предыдущей фазы. Для описания этого состояния они используют универсальный математический аппарат, объединяющий квантовую механику и теорию относительности.

28 февраля 2020, 10:13НаукаУченые зафиксировали мощнейший взрыв во Вселенной

Происхождение структуры Вселенной авторы прослеживают до мельчайших неоднородностей, фиксируемых на фоне сверхвысокочастотного реликтового космического излучения, которое было испущено, когда Вселенной было всего 380 тысяч лет.

Но само это излучение обладает тремя загадочными аномалиями, которые трудно объяснить с помощью классической физики. Эти отклонения настолько серьезные, что многие физики начали говорить о кризисе в космологии.

В новом исследовании ученые доказывают, что с точки зрения петлевой квантовой космологии описание инфляции устраняет две основные аномалии в распределении реликтового излучения.

"Используя космологию квантовой петли, мы естественным образом разрешили две из этих аномалий, что позволяет избежать потенциального кризиса, — приводятся в пресс-релизе университета слова одного из авторов исследования Чон Дон Хи (Donghui Jeong), доцента кафедры астрономии и астрофизики. — Присутствие этих аномалий говорит о том, что мы живем в исключительной Вселенной".

Авторы считают, что неоднородности реликтового излучения являются результатом неизбежных квантовых флуктуаций в ранней Вселенной. Во время ускоренной фазы расширения — инфляции — эти изначально крошечные флуктуации растягивались под воздействием силы тяжести, отражаясь в наблюдаемых неоднородностях.

"Стандартная инфляционная парадигма, основанная на общей теории относительности, рассматривает пространство-время как гладкий континуум, — говорит первый автор работы, профессор Абхай Аштекар (Abhay Ashtekar), директор Института гравитации и космоса штата Пенсильвания. — Ткань рубашки тоже выглядит как двухмерная поверхность, но при ближайшем рассмотрении вы можете увидеть, что она соткана из плотно упакованных одномерных нитей. Так и в ткань пространства-времени вплетены квантовые нити. Учитывая эти нити, петлевая квантовая космология позволяет нам выйти за пределы континуума, описываемого общей теорией относительности".

Ученые надеются, что новые спутниковые миссии, такие как LiteBIRD и Cosmic Origins Explorer, нацеленные на обнаружение следов первичных гравитационных волн на фоне реликтового излучения, подтвердят их выводы.

12 июля 2019, 08:00НаукаУченые ищут разгадку самых странных сигналов из глубин Вселенной

Теории и модели происхождения Вселенной. Как, почему, откуда появилась Вселенная

Сегодня мы говорим об этой, ну как ее, Вселенной. Так уж получилось, что однажды она откуда-то появилась, и вот все мы здесь. Кто-то читает эту статью, кто-то готовится к экзамену, проклиная все на свете... Самолеты летают, поезда ходят, планеты крутятся, где-то всегда что-то происходит. Людям всегда было интересно знать один сложный  ответ  на  простой вопрос. Как же все начиналось и как это мы докатились до того, что есть? Иными словами - как родилась Вселенная?

Итак, вот они - разные версии и модели происхождения Вселенной.

Креационизм: все создал Господь Бог

 

Креационизм

 

Среди всех теорий о происхождении Вселенной эта появилась самой первой. Очень хорошая и удобная версия, которая, пожалуй, будет иметь актуальность всегда. Кстати, многие ученые физики, несмотря на то что наука и религия часто представляются понятиями противоположными, верили в Бога. Например, Альберт Эйнштейн говорил:

«Каждый серьезный естествоиспытатель должен быть каким-то образом человеком религиозным. Иначе он не способен себе представить, что те невероятно тонкие взаимозависимости, которые он наблюдает, выдуманы не им. В бесконечном универсуме обнаруживается деятельность бесконечно совершенного Разума. Обычное представление обо мне, как об атеисте – большое заблуждение. Если это представление почерпнуто из моих научных работ, могу сказать, что мои научные работы не поняты»

 

Альберт Эйнштейн

 

Теория Большого Взрыва

Пожалуй, самая распространенная и наиболее признанная модель происхождения нашей Вселенной. Во всяком случае, о ней слышал практически каждый. Что говорит нам Большой Взрыв? Однажды, лет эдак 14 миллиардов назад, пространства и времени не было, а вся масса вселенной была сосредоточена в крохотной точке с невероятной плотностью – в сингулярности. В один прекрасный момент (если так можно сказать -времени-то не было) сингулярность не выдержала из-за возникшей в ней неоднородности, произошел так называемый Большой Взрыв. И с тех пор Вселенная постоянно расширяется и остывает.

 

Большой Взрыв

 

Модель расширяющейся Вселенной

Сейчас доподлинно известно, что Галактики и иные космические объекты удаляются друг от друга, а значит, Вселенная расширяется. В 20-м веке существовало множество альтернативных теорий происхождения Вселенной. Одной из самых популярных была модель стационарной Вселенной, за которую ратовал сам Эйнштейн. Согласно этой модели, Вселенная не расширяется, а находиться в стационарном состоянии благодаря какой-то удерживающей ее силе.

Теория Большого Взрыва тверже встала на ноги после открытия космологического красного смещения и реликтового излучения.  Два этих явления -  самые весомые доводы в пользу правильности теории. Возможно, кроме этого вам будет полезна статья о том, как создать презентацию в ворде.

 

Большой взрыв

 

Красное смещение – это наблюдаемое для далеких источников понижение частот излучения, которое объясняется отдалением источников (галактик, квазаров) друг от друга. Данный факт свидетельствует о том, что Вселенная расширяется.

Реликтовое излучение – это как бы отголоски большого взрыва. Ранее Вселенная представляла собой горячую плазму, которая постепенно остывала. Еще с тех далеких времен во Вселенной остались так называемые блуждающие фотоны, которые образуют фоновое космическое излучение. Ранее при более высоких температурах Вселенной данное излучение было гораздо мощнее. Сейчас же его спектр соответствует спектру излучения абсолютно твердого тела с  температурой всего  2,7 Кельвин.

Теория струн

Современное изучение эволюции Вселенной невозможно без согласования его с квантовой теорией. Так, например, в рамках теории струн (теория струн основана на гипотезе о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических  квантовых струн), предполагается модель множественной Вселенной. Конечно, там тоже был Большой Взрыв, но он произошел не просто так и из ничего, а, возможно, в результате столкновения нашей Вселенной с какой-то другой, еще одной Вселенной.

Собственно, кроме Большого Взрыва, породившего нашу Вселенную, во множественной Вселенной происходит множество других Больших Взрывов, порождающих множество других Вселенных, развивающихся по своим, отличным от известных нам законам физики.

 

Шелдон

 

Скорее всего мы никогда не узнаем наверняка, как, откуда и почему появилась Вселенная. Тем не менее, размышлять об этом можно очень долго и интересно, а чтобы у Вас было достаточно пищи для размышлений, предлагаем  посмотреть увлекательное видео на тему  современных теорий происхождения Вселенной.

Проблемы развития Вселенной слишком масштабны. Настолько масштабны, что, по сути, даже не являются проблемами. Предоставим физикам-теоретикам ломать над ними головы и перенесемся из глубин Вселенной на Землю, где нас, возможно, ждет неначатый курсач или диплом. Если это так, мы предлагаем свое решение этого вопроса. Закажите отличную работу у авторов Zaochnik, вздохните спокойно, и будьте в гармонии с собой и Вселенной.

5 известных теорий возникновения Вселенной, ставших частью поп-культуры — FURFUR

5 популярных теорий возникновения Вселенной, ставших культурными мемами

  • 19 декабря 2013 в 16:15
  • 160474

Новость о том, что Вселенная, согласно свежей математической теории, может представлять собой голограмму, несколько дней назад взорвала сайт Nature — ведущего научного журнала мира. Как обычно, на расчёты, их методику и место в современной физической космологии обратили внимание немногие — но заголовок, будто материализовавшийся из книги Филипа Дика, разошёлся по всем соцсетям. Подобную судьбу в последние годы наследуют почти все термины такого рода, связанные с научными гипотезами о возникновении сущего, — от «сингулярности» до «тёмной материи». Будьте уверены, поп-культура переварит их и превратит значения слов в нечто максимально таинственное и непонятное — тем более что интерес массового зрителя и читателя к космологии в последние годы неуклонно растёт. В этом материале мы решили собрать другие известные теории возникновения Вселенной, превратившиеся в поп-культурные мемы.

 

1

Мифологическая космология

Ничто не мило читателю или зрителю в постмодернистском мире так сильно, как синкретическое сочетание различных мифологий: на этом строится буквально любой супергеройский эпос (лучший пример из недавнего — «Мстители»: германские боги, лавкрафтианские инопланетяне, мессианская фигура жертвующего собой Тони Старка, индустриальный оборотень Халк и т. д., и т. п.). Какое это имеет отношение к научным теориям устройства мира, спросите вы? Самое прямое: истории о ясене Иггдрасиле и черепе Урана предшествовали научному пониманию мира и формировали его. Эту хитрую наследственность в жанровом кинематографе любят демонстрировать в лоб — как в «Звёздных войнах», где обеспечивающая существование далёкой галактики Силы имеет двойную природу — мистическую и биологическую (все помнят слово «мидихлорианы»?), или в «Хижине в лесу», где высокотехнологичный центр поддерживает бесперебойное обеспечение древних богов человечиной.

 

 

 

  

Истории о ясене Иггдрасиле
и черепе Урана предшествовали научному пониманию мира
и формировали его.

  

 

 

 

 

2

Мультиверс

Представлению о множественности миров гораздо больше лет, чем вы, скорее всего, думаете — и мы сейчас не имеем в виду индуистскую концепцию перерождения. Еще в XII веке мусульманский философ Фахруддин ар-Рази предположил, что за пределами нашего мира существует пустота, заполненная другими вселенными — а в начале XXI века такая точка зрения является крайне популярной частью персонализированной метафизики. Кстати говоря, личностные квазирелигиозные воззрения, сочетающие в себе христианскую мораль, представления о карме и параллельных мирах раньше любил описывать Дуглас Коупленд — в «Поколении X» для этого даже вводится специальный термин, «селф-изм». Что касается мультиверса, то он стал общим местом в научной фантастике и комиксах как таковых: именно так компания DC, скажем, объясняет одновременное существование полудюжины версий Бэтмена. С другой стороны, в данном случае интерпретация понятия довольно далеко ушла от его современной дефиниции: там, где в нынешней квантовой механике продолжается активная дискуссия о правомерности «многомировой» гипотезы, делающей реальными абсолютно все исходы и события (в том случае если они принципиально возможны), в научной фантастике (от «Эффекта бабочки» Брэдбери до трилогии «Назад в будущее») части мультиверса почти всегда так или иначе влияют друг на друга.

 

3

Теория Большого Взрыва

Наиболее часто встречающееся в современной поп-культуре космологическое понятие — соответствующее словосочетание можно найти в текстах песен (между прочим, групп с таким названием существует как минимум три: норвежская металлическая, британская синтипоповая и корейский бойз-бэнд), в бесчисленных сценариях комиксов и, разумеется, в названии популярного ситкома о гиперболизированной жизни молодых учёных. Как ни странно, суть события при пересказе почти не перевирают: действительно, Большой Взрыв — это своеобразный «акт творения» Вселенной; событие, в результате которого появились и время, и материя. Именно поэтому, например, бессмысленно задаваться вопросом «что было до Большого Взрыва?» — поскольку само время появилось ровно с началом этого события! (Этот момент хорошо проясняется в «Краткой истории времени», классическом нон-фикшне Стивена Хокинга.) Не зря к этой теории тепло относился Иоанн Павел II: действительно, она довольно неплохо стыкуется с космологией авраамических религий.

 

 

 

  

Большой Взрыв — это своеобразный «акт творения» Вселенной; событие, в результате которого появились и время, и материя.

  

 

 

 

4

Эволюционная космология

Строго говоря, эволюция — что в исходном понимании гениального Чарльза Дарвина, что в современной версии, рассматривающей эволюцию в применении к популяциям, — не является космологической теорией и описывает лишь развитие жизни. Но в расширительном смысле идея и философия бесконечного изменения находит очень большой отклик у людей творческих профессий — в том числе её переносят на такие метафизические материи как этика и эстетика. Ярчайшим примером работы на эту тему является «Древо жизни» Терренса Малика: даже если не рассматривать те моменты, где режиссёр обращается к космологии напрямую (речь о вызвавших противоречивые отзывы зрителей моментах с древней Землёй, населённой динозаврами), идея эволюционного изменения — это смысловой стержень фильма.

 

5

Теория струн

Попыток модификации Теории Большого Взрыва за те почти уже 100 лет, что она существует, было предпринято довольно много. Теорию струн часто называют очередной «теорией всего» или наследницей теории расширяющейся Вселенной, возникнувшей в результате Большого Взрыва, — но, строго говоря, это не совсем так. Хороших объяснений теории струн «на пальцах» почти нет и по сей день (притом что её история насчитывает несколько десятилетий). Главное, что вам нужно знать о ней, — это то, что в её рамках мир представляется не четырёхмерным, как в эйнштейновском варианте общей теории относительности (три пространственных измерения + время), а вовсе даже 11-мерным: такая интерпретация позволяет получить определённые математические преимущества и снять ряд противоречий между экспериментом и теорией. Несмотря на строгую математичность, за теорией сохраняется эзотерический флёр: именно в таком ключе её использовали режиссер Ридли Скотт и автор сценария Кормак Маккарти в недавнем философском экшене «Советник». Вибрация многомерных струн здесь воспринимается как в метафорическом, так и в совершенно буквальном смысле: струны нарушают структуру мироздания — и разрушают жизни.

Происхождение Вселенной, Солнечной системы и Земли. С точки зрения науки

© Владимир Воронцов, 2019

ISBN 978-5-4483-8559-9

Создано в интеллектуальной издательской системе Ridero

АННОТАЦИЯ

Сегодня, наверное, вы не встретите человека, который бы не слышал о теории Большого взрыва. Именно с него, как утверждают учёные, берёт начало наша Вселенная. Однако мало кто знает, что современная наука накопила достаточно много фактов, заставляющих в корне изменить первоначальную интерпретацию этой теории. А некоторые учёные вообще стали относиться к ней как к научному мифу. Что же случилось? Что заставляло учёных пересмотреть как саму теорию Большого взрыва, так и своё отношение к ней? Как она выглядит в настоящее время? С какими проблемами сталкиваются физики и космологи при её разработке и проверке? И, наконец, способна ли наука дать окончательный ответ на вопрос возникновения Вселенной?

Именно этому и посвящена данная книга. В ней мы постарались простым и доступным языком рассказать о положении дел в области космогонии, о некогда популярных и современных теориях происхождения Вселенной, Солнечной системы и Земли. Попытались дать им объективную оценку исходя из самых последних научных открытий.

Книга содержит большое количество цитат известных и авторитетных учёных в области астрофизики и космологии, их комментарии и суждения по тем или иным вопросам мироустройства, а также множество справочной информации, разъясняет сложные определения и понятия.

Издание будет полезно преподавателям и учащимся средних и высших учебных заведений, а также всем тем, кто интересуется вопросами мироздания.

Издание 2-е, переработанное и дополненное (сентябрь 2018 г.)

ВНИМАНИЕ!

Данная книга представляет собой сокращённый вариант иллюстрированного издания, размещённого на научно-образовательном портале «С точки зрения науки» santorum.ru

 
СОДЕРЖАНИЕ:
 
 
ВВЕДЕНИЕ
1. ЭВОЛЮЦИОННЫЕ ТЕОРИИ ПРОИСХОЖДЕНИЯ СОЛНЕЧНОЙ СИСТЕМЫ И ЗЕМЛИ
1.1 Первая эволюционная модель происхождения Солнечной системы – модель Ж. Бюффона
1.2 Модель И. Канта
1.3 Модель П. Лапласа
1.4 Современные небулярные гипотезы
КАНТ И ЛАПЛАС: ДВА ВЗГЛЯДА НА МИРОЗДАНИЕ
2. ЭВОЛЮЦИОННЫЕ ТЕОРИИ ПРОИСХОЖДЕНИЯ ВСЕЛЕННОЙ
ИСААК НЬЮТОН: ЧТО УПРАВЛЯЕТ МИРОЗДАНИЕМ
2.1 Астрономические свидетельства расширения Вселенной
2.2 Стандартная модель происхождения Вселенной (теория Большого взрыва)
2.2.1 Модель «горячего» начала Вселенной
2.2.2 Модель «холодного» начала Вселенной
ЧТО ЯВЛЯЕТСЯ ИСТОЧНИКОМ ФОНОВОГО КОСМИЧЕСКОГО ИЗЛУЧЕНИЯ?
3. АНАЛИЗ ЭВОЛЮЦИОННЫХ ТЕОРИЙ ПРОИСХОЖДЕНИЯ ВСЕЛЕННОЙ
3.1 Вселенная из «ничего». Инфляционная модель Большого взрыва
3.2 Парадоксы инфляционной модели Большого взрыва
3.2.1 Сколько энергии в вакууме?
3.2.2 Из чего состоит «ничего»?
3.2.3 Идеальная скорость расширения
3.2.4 Идеальная картина расширения
СТИВЕН ХОКИНГ: НА КАКОЙ ВОПРОС НЕ сможет ответить НАУКА
3.2.5 Неоднородности в однородном расширении
3.2.6 Второй закон термодинамики
3.2.7 Загадочная асимметрия
3.3 Сколько Вселенных во Вселенной?
3.3.1 Хаотическая инфляция
3.4 Уйти от сингулярности
3.5 Назад к стационарной Вселенной
3.6 Пульсирующая Вселенная
3.7 Появление «тёмных персонажей»
3.7.1 Тёмная энергия
3.7.2 Тёмная материя
ЧТО СВИДЕТЕЛЬСТВУЕТ О СУЩЕСТВОВАНИИ ТЁМНОЙ МАТЕРИИ
3.8 Можно ли обогнать свет?
КАК УЧЁНЫЕ ОПРЕДЕЛЯЮТ РАССТОЯНИЕ ДО ГАЛАКТИК И СКОРОСТИ ИХ УДАЛЕНИЯ
3.9 Новая теория Большого взрыва
3.9.1 Парадокс новой теории Большого взрыва
ЧЕТЫРЕ ПРИЧИНЫ КРАСНОГО СМЕЩЕНИЯ
4. АНАЛИЗ ЭВОЛЮЦИОННЫХ ТЕОРИЙ ПРОИСХОЖДЕНИЯ СОЛНЕЧНОЙ СИСТЕМЫ И ЗЕМЛИ
4.1 Небулярные гипотезы
4.1.1 Разность состава планет и их спутников
4.1.2 Разнонаправленный характер вращения
4.1.3 Момент количества движения
4.1.4 Закономерности планетных расстояний
4.1.5 Распределение массы вещества планетных систем
4.1.6 Орбитальный наклон планет
4.1.7 Исключительный состав Земли
4.2 Катастрофические гипотезы
4.3 Гипотезы захвата
5. ПРОИСХОЖДЕНИЕ МИРА: КАКОЙ ОТВЕТ ДАСТ НАУКА? (ВМЕСТО ЗАКЛЮЧЕНИЯ)
5.1 Теория Большого взрыва в центре научных баталий
5.1.1 Открытое письмо научному сообществу.
  «AN OPEN LETTER TO THE SCIENTIFIC COMMUNITY»
5.1.2 «А был ли Большой взрыв?»
5.1.3 «Идея сингулярности безнадёжно устарела».
5.1.4 Существует ли тёмная материя?
5.2 Антропный космологический принцип и разумный замысел
ПОСЛЕСЛОВИЕ
Список использованных источников
 

ВНИМАНИЕ!

Данная книга представляет собой сокращённый вариант иллюстрированного издания, размещённого на научно-образовательном портале «С точки зрения науки» santorum.ru

ВВЕДЕНИЕ

Наш мир велик и многообразен. Всё, что нас окружает, будь то микроскопические атомы и мельчайшие пылинки, отдельные звёзды и огромные туманности, животные, растения, микроорганизмы составляют то, что принято называть Вселенной. Вселенная – это наш дом, в котором всё обустроено так, чтобы на протяжении долгих веков обеспечивать и поддерживать необходимые для жизни условия.

Вопрос происхождения Вселенной интересовал человека с незапамятных времён. Ответить на него пытались жрецы Древнего Египта, философы Древней Греции и Рима… и сегодня мы тратим огромные средства на постижение загадок мироздания.

Для большинства людей Средних веков, эпохи Возрождения и даже Нового времени ответом на вопрос происхождения мира служили слова, записанные евангелистом Иоанном: «В начале было Слово, и Слово было у Бога, и Слово было Бог. Оно было в начале у Бога. Всё чрез Него начало быть, и без Него ничто не начало быть, что начало быть».

Однако сегодня мы с вами живём в век прогресса науки. Современная наука, подобно религии, полна решимости пролить свет на тайну мироздания. Но ответ у неё совсем другой. Если выразить его в форме библейских стихов, то он будет звучать примерно так: «В начале было ничего, и ничего было у ничего… Всё чрез ничего начало быть, и без ничего ничего не начало быть, что начало быть».

Наверное, каждый из нас слышал о космологической теории рождения Вселенной в результате Большого взрыва. Научная и научно-популярная литература, посвящённая этой теории, буквально наводнила книжные полки и интернет-ресурсы. Учёные говорят, что «взрыв» (в прямом смысле – стремительное расширение) явился толчком к появлению всего сущего в мире. Причём интерпретация этой космогонической модели постоянно меняется, корректируется и дополняется исходя из новых научных открытий. Ещё не так давно нам рассказывали, что Вселенная родилась из «первобытного атома» в котором сосредотачивалось всё её вещество. Этот атом состоял из элементарных частиц невероятной плотности, и был величиной примерно с теннисный мяч. После его «взрыва» началась стремительная эволюция, приведшая к образованию звёзд, планет и, в конце концов, нас с вами. Но сегодня о Большом взрыве учёные говорят немного иначе: в начале не было никакого сверхплотного атома элементарных частиц. Все физические частицы возникли в результате взрыва пустого пространства, в буквальном смысле «ничего». И из этого «ничего» возникло всё, что нас окружает.

Хотя, как признаются сами учёные, любая научная теория происхождения Вселенной, по большому счёту, является плодом воображения её автора, но она не противоречит законам физического мира и выводится из формул, подтверждается некоторыми наблюдениями, а потому имеет право на существование. Так что всё соответствует критериям научного знания.

Но не следует думать, что все учёные безоговорочно принимают теории, выведенные из формул, в том числе и Большой взрыв. Кто-то его нещадно критикует1, кто-то просто отмечает слабые стороны, а кто-то предпочитает воздерживаться от каких-либо суждений, просто считая вопрос происхождения Вселенной вопросом философским. Ведь формулы есть формулы, и как бы хорошо теория не выглядела на бумаге, никто не сможет знать, что происходило в реальности. Выходит, что мы так никогда и не сможем получить достоверные ответы на главные вопросы мироздания.

Но не торопитесь с этим соглашаться. На самом деле последние научные открытия в области космологии раскрывают перед нами поистине удивительные вещи об устройстве нашей Вселенной, что позволило подойти к проблеме происхождения мира с другой стороны. Хотя в науке она по-прежнему остаётся нерешённой, тем не менее уже сегодня мы можем выбрать направление, по которому нужно двигаться, чтобы найти истину.

Именно этому и посвящена данная книга. В ней мы постарались простым и доступным языком рассказать о положении дел в области космогонии, о некогда популярных и современных теориях происхождения Вселенной, Солнечной системы и Земли. Попытались дать им объективную оценку исходя из самых последних научных открытий. Книга содержит большое количество цитат известных и авторитетных учёных в области астрофизики и космологии, их комментарии и суждения по тем или иным вопросам мироустройства, а также множество справочной информации.

1. ЭВОЛЮЦИОННЫЕ ТЕОРИИ ПРОИСХОЖДЕНИЯ СОЛНЕЧНОЙ СИСТЕМЫ И ЗЕМЛИ

Рассматривая и изучая видимые объекты космоса – Солнце, звёзды, другие планеты и небесные тела, постигая законы, которым они подчиняются, люди как правило приходили к осознанию необходимости творческого начала в их происхождении и становлении. Безмерность космического пространства, строгие закономерности движения планет, гармония и порядок во Вселенной создавали впечатление произведения некоего Разума. Поэтому практически во всех космогонических мифах древних народов непременно присутствовал Демиург2, или Творец, действия и воля которого являются причиной и движущей силой всего мироздания.

1.1 Первая эволюционная модель происхождения Солнечной системы – модель Ж. Бюффона (1749 г.)

Первая научная гипотеза, пытающаяся представить происхождение объектов космоса без участия творческого начала, появилась в XVIII в. Принадлежала она французскому учёному Жоржу Бюффону (1707—1788). В 1749 г. Бюффон издал книгу «Теория Земли», в которой описал процесс происхождения планет Солнечной системы. Согласно Бюффону, наша Земля и другие планеты обязаны своим происхождением комете, которая, столкнувшись с Солнцем, выбросила из него часть вещества в виде гигантских капель. Капли начали вращаться на разных расстояниях от светила и после остывания превратились в планеты. В процессе вращения будущих планет от них отрывались небольшие жидкие массы, из которых впоследствии сформировались спутники. Таким образом, по Бюффону, планетная система нашего Солнца возникла в результате случайной катастрофы гигантского масштаба, а материалом для её построения было солнечное вещество. Такая модель получила название катастрофической.

1.2 Модель И. Канта (1755 г.)

Следующая попытка разгадать тайну происхождения космических тел была предпринята немецким философом, профессором Иммануилом Кантом (1724—1804). Кант считал, что Солнечная система возникла из некой первичной разреженной холодной материи, свободно рассеянной во Вселенной. Частицы этой материи перемещались в различных направлениях и, сталкиваясь друг с другом, теряли скорость. Наиболее тяжёлые и плотные из них под действием силы притяжения соединялись друг с другом, образуя шаровидные сгустки, из которых формировались будущие звёзды. Одной из них является наше Солнце. Шаровидные сгустки, в свою очередь, притягивали более удалённые, мелкие и лёгкие частицы. Таким образом возникло некоторое количество вращающихся тел. Часть этих тел, первоначально двигавшихся в противоположных направлениях, в конечном счёте была втянута в единый поток и образовала кольца материи, расположенные приблизительно в одной плоскости и вращающиеся вокруг звёздного сгустка в одном направлении, не мешая друг другу. В отдельных кольцах образовывались более плотные ядра, к которым постепенно притягивались более лёгкие частицы, формируя шаровидные скопления материи. Так были образованы все планеты Солнечной системы.

1.3 Модель П. Лапласа (1796 г.)

В 1796 г. французский математик и физик Пьер Лаплас (1749—1827) представил свою модель эволюции Вселенной. Если гипотеза Канта затрагивала вопрос происхождения всех космических объектов, то Лаплас ограничился только Солнечной системой. Он полагал, что Солнце существовало первоначально в виде огромной раскалённой газообразной туманности с незначительной плотностью. Эта туманность первоначально медленно вращалась в пространстве. Под влиянием сил гравитации она постепенно сжималась, причём скорость её вращения увеличивалась. Под действием больших центробежных сил, возникающих при быстром вращении в экваториальном поясе, от газовых сгустков последовательно отделялись кольца, которые в результате охлаждения превратились в планеты. Спутники сформировались из вещества вторичных колец, оторвавшихся от раскалённой газообразной массы планет. Реликты такого кольца, вернее, системы колец, полагал Лаплас, и сегодня существуют у Сатурна, менее заметны они у Юпитера и Урана. Вследствие продолжавшегося уплотнения материи температура новообразованных тел была исключительно высокой. В то время и наша Земля представляла собой раскалённый газообразный шар, светившийся подобно звезде. Постепенно, однако, этот шар остывал, его материя переходила из газообразного в жидкое и, в конце концов, в твёрдое состояние.

1.4 Современные небулярные гипотезы

Как мы видим, и Кант, и Лаплас3 в своей космогонии исходили из одной идеи: Солнечная система возникла в результате закономерного развития туманности. Это дало основание для объединения обеих гипотез в одну, получившую название небулярной гипотезы Канта—Лапласа (небулярная от лат. nebula – облако, туман).

В 1944 г. российский учёный, академик Отто Шмидт (1891—1956) предложил иной вариант небулярной гипотезы. Так же как и Бюффон, он начал с уже готового Солнца, которое, по его мнению, когда-то проходило мимо холодного газо-пылевого облака. Частицы пыли и газы начали вращаться вокруг Солнца, образовав сгущения (планетезимали), которые по мере роста превращались в планеты. Первоначально планеты были холодными, их разогрев и даже частичное плавление произошли потом, за счёт распада радиоактивных элементов.

На сегодняшний день эволюционная космология отдаёт явное предпочтение небулярным гипотезам происхождения Солнечной системы (в частности, гипотезе Шмидта). В школьных и университетских учебниках именно ей уделяется наибольшее внимание (Ковдерко, 2004).

(Современные альтерантивные гипотезы происхождения Солнечной системы, Земли и других планет изложены в гл. 4.)

Происхождение вселенной - это... Что такое Происхождение вселенной?

Происхождение вселенной

Происхождение вселенной — любое описание или объяснение начальных процессов возникновения существующей вселенной, включая образование астрономических объектов (космогонию), возникновение жизни, планеты Земля и человечества. Существует множество точек зрения на вопрос происхождения вселенной, начиная с научной теории, множества отдельных гипотез, и заканчивая философскими размышлениями, религиозными убеждениями, и элементами фольклора.

Идея возникновения мира

Все концепции возникновения вселенной условно можно разделить на две:

  • Концепции возникновения вселенной без участия осознающего фактора(Творца, «Вселенского разума» и т. д.), т.е. с соблюдением принципа заурядности. Такие концепции в основном, научные — не признающие одухотворённость творения и понятие Творца, или, иными словами, «осознающего создателя», и опирающиеся на научные факты;
  • Концепции сотворения мира — в основном, религиозные — признающие Творца в качестве первопричины.

Это выражается прежде всего в достаточно серьезных противоречиях в терминологии и языковых оппозициях таких как: сотворение — возникновение, творец — природа и т. д. Во всем остальном многие виды мировоззрения зачастую пересекаются и дублируют друг друга.

Дата возникновения вселенной

Момент во времени, когда появился мир (Вселенная, звёзды, планеты и т. п.). Существует несколько научных и религиозных систем датировок.

  • Согласно библейским источникам, период времени от сотворения мира Богом до Рождества Христова насчитывал от 3483 до 6984 лет.
  • Теория Большого взрыва, широко распространённая в современной физике, оценивает появление Вселенной около 13 млрд лет назад. Самая ранняя известная эпоха — это планковское время (10−43 секунд после Большого взрыва).
  • В индуизме время жизни мироздания до возврата в «непроявленное» состояние равно 100 годам Брахмы. Каждый год Брахмы состоит из 360 суток; сутки состоят из равных дня и ночи; день длится одну калпу, которой соответствует 4,32 млрд человеческих лет. Итого, время жизни мироздания — около 311 трлн лет. Считается, что нынешний Брахма находится на 51 году, что соответствует около 155 трлн лет.[1]

Наука и естествознание

Основная статья: Возникновение вселенной

Большой взрыв

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла 13,7 ± 0,2 миллиарда лет назад из некоторого начального сингулярного состояния с гигантскими температурой и плотностью и с тех пор непрерывно расширяется и охлаждается. В последнее время ученым удалось определить, что скорость расширения Вселенной, начиная с определённого момента в прошлом, постоянно увеличивается, что уточняет некоторые концепции теории Большого взрыва. Современная стандартная модель развития Вселенной в физической космологии (Лямбда-CDM модель) учитывает эти модификации.

Другие теории

Согласно одной из альтернативных теорий (так называемой «бесконечно пульсирующей Вселенной»), мир никогда не возникал и никогда не исчезнет (или по другому рождается и умирает бесконечное количество раз), но обладает периодичностью, при этом под сотворением мира понимается точка отсчета после которой мир строится заново (она же обозначает и конец мира).

Объяснение ряда наблюдаемых или предполагаемых явлений, таких как сингулярности, возникающие при развитии массивных звёзд в «чёрные дыры» или существовавшие в «точке 0» в теории Большого взрыва, или асимметрия вещества и антивещества, могут быть найдены при допущении. что наша Вселенная — продукт процессов, имевших место в «Сверхвселенной», метрика которой больше наблюдаемой нами. Такими процессами могли быть соударение сверхмасс, или столкновение сверхмассы с нашей пространственно-временной метрикой, возникшее искривление которой вызывает эффект разбегания галактик, или прорыв в виде «сверхбелой дыры».

Для всех этих гипотез существенны:

  • представление о нашей Вселенной, как о вложенном пространстве, открытой системе;
  • понимание, что с момента зарождения наша Вселенная наследует некоторые фундаментальные свойства источника творения, например, значительное количественное преобладание вещества над антивеществом;
  • временной фактор (материя Сверхвселенной поступает в наше пространство или формирует его в течение конечного интервала времени с переменной интенсивностью).

Креационизм и пограничные теории

Многие креационисты считают, что нет такого фундаментального противоречия между научными и религиозными концепциями, как кажется на первый взгляд. Считается, что многие термины, используемые в древних религиозных текстах, не следует понимать буквально и необходимо делать скидку на время и язык, использовавшийся в древности, и рассматривать их комплексно. К примеру, известный библейский сюжет о 6 днях творения следует понимать метафорично, хотя бы только потому, что, согласно тому же тексту, Солнце и Луна появились только на четвертый день, что ясно говорит о том, что как минимум все предыдущие «дни»(а, возможно, и последующие) не являются днями в общепринятом понимании этого слова и не тождественны суткам.

Каббала о Творении

Теорию «разбиения сосудов», в чём-то подобную теории Большого Взрыва в современной физике, сформулировал средневековый кабаллист Ицхак Луриа.

Религия и философия

Сотворение мира — группа научно-философских теорий, наряду с научными теориями, предпринимающих попытку объяснить и описать возникновение вселенной. Главный отличием от научных теорий является вера в одухотворенность творения и признание существования Творца, породившего Мир.

См. также

Примечания

Истоки вселенной факты и информация

Теория происхождения нашей Вселенной, получившая наибольшее подтверждение, основана на событии, известном как Большой взрыв. Эта теория родилась из наблюдения, что другие галактики удаляются от нашей с огромной скоростью во всех направлениях, как если бы все они были запущены древней взрывной силой.

Бельгийский священник по имени Жорж Лемэтр впервые предложил теорию большого взрыва в 1920-х годах, когда он предположил, что Вселенная началась с единственного первичного атома.-43 секунды своего существования, Вселенная была очень компактной, меньше миллиарда миллиардов миллиардных размера одного атома. Считается, что в таком непостижимо плотном, энергетическом состоянии четыре фундаментальные силы - гравитация, электромагнетизм, а также сильные и слабые ядерные силы - были объединены в единую силу, но наши текущие теории еще не выяснили, как единое, объединенная сила будет работать. Чтобы осуществить это, нам нужно знать, как гравитация работает в субатомном масштабе, но в настоящее время мы этого не делаем.

Также считается, что чрезвычайно близкое расстояние позволило самым первым частицам Вселенной смешиваться, смешиваться и достигать примерно одинаковой температуры. Затем за невообразимо малую долю секунды вся эта материя и энергия расширились наружу более или менее равномерно, с небольшими вариациями, вызванными флуктуациями в квантовом масштабе. Эта модель головокружительного расширения, называемого инфляцией, может объяснить, почему во Вселенной такая равномерная температура и равномерное распределение вещества.

После инфляции Вселенная продолжала расширяться, но гораздо медленнее.До сих пор неясно, что именно привело к инфляции.

Последствия космической инфляции

Со временем, когда материя остыла, начали формироваться более разнообразные виды частиц, которые в конечном итоге конденсировались в звезды и галактики нашей нынешней Вселенной.

К тому времени, когда возраст Вселенной была одна миллиардная доли секунды, Вселенная остыла настолько, что четыре фундаментальные силы отделились друг от друга. Также сформировались фундаментальные частицы Вселенной.Однако было все еще так жарко, что эти частицы еще не собрались во многие субатомные частицы, которые мы имеем сегодня, такие как протон. По мере того, как Вселенная продолжала расширяться, этот горячий первичный суп, называемый кварк-глюонной плазмой, продолжал остывать. Некоторые коллайдеры частиц, такие как Большой адронный коллайдер ЦЕРНа, достаточно мощны, чтобы воссоздать кварк-глюонную плазму.

Излучение в ранней Вселенной было настолько интенсивным, что сталкивающиеся фотоны могли образовывать пары частиц, состоящих из материи и антивещества, которая во всех отношениях похожа на обычную материю, за исключением противоположного электрического заряда.Считается, что ранняя Вселенная содержала равное количество вещества и антивещества. Но по мере того, как Вселенная остыла, фотоны перестали быть достаточно мощными, чтобы образовывать пары материя-антивещество. Как в экстремальной игре с музыкальными стульями, многие частицы вещества и антивещества соединились и уничтожили друг друга.

Каким-то образом уцелело некоторое количество избыточной материи - и теперь это вещество, из которого состоят люди, планеты и галактики. Наше существование - явный признак того, что законы природы трактуют материю и антивещество по-разному.Исследователи экспериментально наблюдали этот дисбаланс правил, называемый CP-нарушением, в действии. Физики все еще пытаются выяснить, как именно материя победила в ранней Вселенной.

Создание атомов

В течение первой секунды Вселенной было достаточно прохладно, чтобы оставшаяся материя слилась в протоны и нейтроны, знакомые частицы, составляющие ядра атомов. И по прошествии первых трех минут протоны и нейтроны собрались в ядра водорода и гелия.По массе водород составлял 75 процентов вещества ранней Вселенной, а гелий - 25 процентов. Изобилие гелия - ключевое предсказание теории большого взрыва, подтвержденное научными наблюдениями.

Несмотря на наличие атомных ядер, молодая Вселенная все еще была слишком горячей, чтобы электроны могли осесть вокруг них и образовать стабильные атомы. Материя Вселенной оставалась электрически заряженным туманом, который был настолько плотным, что свет с трудом пробивался сквозь него. Потребуется еще 380 000 лет или около того, чтобы Вселенная остыла настолько, что образовались нейтральные атомы, - ключевой момент, называемый рекомбинацией.Более прохладная Вселенная впервые сделала ее прозрачной, что позволило фотонам, гремящим внутри нее, наконец беспрепятственно пройти сквозь нее.

Мы все еще видим это изначальное послесвечение сегодня как космическое микроволновое фоновое излучение, которое встречается по всей Вселенной. Излучение аналогично тому, которое используется для передачи телевизионных сигналов через антенны. Но это самое древнее известное излучение, и оно может содержать много секретов о самых ранних моментах существования Вселенной.

От первых звезд до наших дней

Не было ни одной звезды во Вселенной примерно через 180 миллионов лет после Большого взрыва.Столько времени потребовалось гравитации, чтобы собрать облака водорода и превратить их в звезды. Многие физики думают, что огромные облака темной материи, все еще неизвестного материала, который более чем в пять раз превышает видимую материю, стали гравитационным каркасом для первых галактик и звезд.

После того, как первые звезды во Вселенной загорелись, свет, который они выпустили, собрал достаточно энергии, чтобы снова оторвать электроны от нейтральных атомов, что является ключевой главой Вселенной, называемой реионизацией. В феврале 2018 года австралийская команда объявила, что они, возможно, обнаружили признаки этого «космического рассвета».«Через 400 миллионов лет после большого взрыва родились первые галактики. За миллиарды лет, прошедшие с тех пор, сформировались и переформировались звезды, галактики и скопления галактик, что в конечном итоге привело к нашей родной галактике, Млечному Пути, и нашему космическому дому, Солнечной системе.

Даже сейчас Вселенная расширяется, и, к удивлению астрономов, темпы расширения ускоряются. Считается, что это ускорение вызвано силой, отталкивающей гравитацию, называемой темной энергией. Мы до сих пор не знаем, что такое темная энергия, но считается, что она составляет 68 процентов всей материи и энергии Вселенной.Темная материя составляет еще 27 процентов. По сути, все, что вы когда-либо видели - от вашей первой любви до звезд над головой - составляет менее пяти процентов Вселенной.

Происхождение Вселенной

Из книги Гролье Новая книга знаний

В концепции художника представлены переломные периоды в развитии Вселенной согласно одной теории. Он начинается через крошечную долю секунды после Большого взрыва и проходит так, как выглядит сегодня - 15 миллиардов лет спустя.(Центр космических полетов имени Годдарда НАСА)

Как и когда возникла Вселенная? Никакой другой научный вопрос не является более фундаментальным и не вызывает таких оживленных споров среди исследователей. В конце концов, когда возникла Вселенная, вокруг никого не было, так что кто может сказать, что произошло на самом деле? Лучшее, что могут сделать ученые, - это разработать самую надежную теорию, подкрепленную наблюдениями за Вселенной. Проблема в том, что до сих пор никто не придумал абсолютно бесспорного объяснения того, как возник космос.

Большой взрыв

С начала 1900-х годов в дискуссии доминировало одно объяснение происхождения и судьбы Вселенной - теория Большого взрыва. Сторонники Большого взрыва утверждают, что между 13 и 15 миллиардами лет назад вся материя и энергия известного космоса были втиснуты в крошечную компактную точку. Фактически, согласно этой теории, тогда материя и энергия были одним и тем же, и отличить одно от другого было невозможно.

Приверженцы Большого взрыва считают, что эта маленькая, но невероятно плотная точка примитивной материи / энергии взорвалась. В течение нескольких секунд огненный шар выбросил материю / энергию со скоростью, приближающейся к скорости света. Некоторое время спустя - может быть, секунды спустя, может быть, годы спустя - энергия и материя начали разделяться и становиться отдельными сущностями. Все различные элементы во Вселенной сегодня возникли из того, что извергнулось в результате этого первоначального взрыва.

Теоретики Большого взрыва утверждают, что все галактики, звезды и планеты все еще сохраняют взрывное движение в момент создания и удаляются друг от друга с огромной скоростью.Это предположение было сделано на основании необычного открытия о соседних с нами галактиках. В 1929 году астроном Эдвин Хаббл, работавший в обсерватории Маунт-Вильсон в Калифорнии, объявил, что все наблюдаемые им галактики удаляются от нас и друг от друга со скоростью до нескольких тысяч миль в секунду.

Redshift

Чтобы измерить скорость этих галактик, Хаббл воспользовался эффектом Доплера. Это явление происходит, когда источник волн, например свет или звук, движется относительно наблюдателя или слушателя.Если источник звука или света движется к вам, вы воспринимаете волны как нарастающие по частоте: звук становится выше по высоте, тогда как свет смещается в сторону синего конца видимого спектра. Если источник удаляется от вас, частота волн падает: звук становится ниже по высоте, а свет имеет тенденцию смещаться к красному концу спектра. Вы, возможно, заметили эффект Доплера, когда слушаете сирену «скорой помощи»: звук нарастает по мере приближения автомобиля и падает по мере его движения.

Чтобы исследовать свет галактик, Хаббл использовал спектроскоп - устройство, которое анализирует различные частоты, присутствующие в свете. Он обнаружил, что свет от далеких галактик смещен вниз к красному концу спектра. Не имело значения, где в небе находится каждая галактика - все были с красным смещением. Хаббл объяснил этот сдвиг, сделав вывод, что галактики движутся, уносясь прочь от Земли. Хаббл предположил, что чем больше красное смещение, тем больше скорость галактики.

У некоторых галактик было лишь небольшое красное смещение. Но свет от других был смещен далеко от красного в инфракрасный, даже в микроволны. Более тусклые и далекие галактики, казалось, имели наибольшее красное смещение, а это означало, что они летели быстрее всех.

Расширяющаяся Вселенная

Итак, если все галактики удаляются от Земли, означает ли это, что Земля находится в центре Вселенной? Самый водоворот Большого взрыва? На первый взгляд, это так.Но астрофизики используют умную аналогию, чтобы объяснить, почему это не так. Представьте себе вселенную в виде пирога с изюмом в духовке. По мере того, как пирог запекается и поднимается, он расширяется. Изюм внутри начинает разлетаться друг от друга. Если бы вы могли выбрать один изюм, чтобы смотреть на другие, вы бы заметили, что все они отходят от вашего особого изюма. Не имеет значения, какой изюм вы выбрали, потому что все изюмы отдаляются друг от друга по мере того, как торт расширяется.Более того, самый дальний изюм будет уходить быстрее всего, потому что между вашим изюмом и этими дальними пирогами будет больше торта.

Так обстоит дело со Вселенной, говорят теоретики Большого взрыва. Они считают, что после Большого взрыва Вселенная расширяется. Само пространство расширяется, точно так же, как пирог между изюмом по их аналогии. Независимо от того, смотрите ли вы с Земли или с инопланетной планеты, находящейся за миллиарды миль от вас, все другие галактики удаляются от вас по мере расширения космоса.Галактики, находящиеся дальше от вас, удаляются от вас быстрее, потому что между вами и этими галактиками расширяется больше пространства. Вот как теоретики Большого взрыва объясняют, почему свет от более далеких галактик смещается дальше к красному концу спектра. Фактически, большинство астрономов сейчас используют это правило, известное как закон Хаббла, для измерения расстояния до объекта от Земли - чем больше красное смещение, тем дальше объект.

В 1965 году двое ученых сделали потрясающее открытие, подтвердившее теорию Большого взрыва.Арно Пензиас и Роберт Уилсон из Bell Telephone Laboratories обнаружили слабое микроволновое излучение, исходящее со всех точек неба. Они и другие физики предположили, что видели послесвечение от взрыва Большого взрыва. Поскольку Большой взрыв затронул всю Вселенную в один и тот же момент времени, послесвечение должно пронизывать всю Вселенную и его можно было бы обнаружить независимо от того, в каком направлении вы смотрели. Это послесвечение называется космическим фоновым излучением. Его длина волны и однородность хорошо сочетаются с математическими расчетами других астрономов о Большом взрыве.

Насколько комковатая вам нравится ваша Вселенная?

Однако модель Большого взрыва не является общепринятой. Одна из проблем теории состоит в том, что она предсказывает гладкую Вселенную. То есть распределение материи в больших масштабах должно быть примерно одинаковым, куда бы вы ни посмотрели. Ни одно место во вселенной не должно быть чрезмерно неровным.

Но в 2001 году астрономы объявили об открытии группы галактик и квазаров, которая заполняет более 125 миллионов кубических световых лет пространства и в настоящее время является самой большой структурой во Вселенной.Вместо равномерного распределения материи Вселенная, кажется, содержит огромные пустые пространства, перемежаемые плотно упакованными полосами материи.

Сторонники Большого взрыва утверждают, что их теория не ошибочна. Они утверждают, что гравитация огромных необнаруженных объектов в космосе (облака холодной темной материи, которые мы не можем увидеть в телескопы, или так называемые космические струны) притягивает материю в сгустки. Другие астрономы, все еще не желающие верить в невидимые объекты только для решения необъяснимой проблемы, продолжают подвергать сомнению фундаментальные аспекты теории Большого взрыва.

Несмотря на свои проблемы, Большой взрыв по-прежнему считается большинством астрономов лучшей теорией, которая у нас есть. Однако, как и в случае любой научной гипотезы, необходимы дополнительные наблюдения и эксперименты, чтобы определить ее достоверность. Прогресс, начиная от более чувствительных телескопов и заканчивая экспериментами в области физики, должен подлить масла в космологические дебаты в ближайшие десятилетия.

Теория устойчивого состояния

Но Большой взрыв - не единственная предлагаемая теория происхождения нашей Вселенной.В 1940-х годах возникла конкурирующая гипотеза, получившая название теории устойчивого состояния. Некоторые астрономы обратились к этой идее просто потому, что в то время не было достаточно информации для проверки Большого взрыва. Британский астрофизик Фред Хойл и другие утверждали, что Вселенная не только однородна в пространстве - идея, называемая космологическим принципом, - но также неизменна во времени, концепция, называемая идеальным космологическим принципом. Эта теория не зависела от конкретного события, такого как Большой взрыв. Согласно теории устойчивого состояния звезды и галактики могут меняться, но в целом Вселенная всегда выглядела так, как сейчас, и так будет всегда.

Большой взрыв предсказывает, что по мере того, как галактики удаляются друг от друга, пространство становится все более пустым. Теоретики устойчивого состояния признают, что Вселенная расширяется, но предсказывают, что новая материя постоянно оживает в пространствах между удаляющимися галактиками. Астрономы предполагают, что этот новый материал состоит из атомов водорода, которые медленно объединяются в открытом космосе, образуя новые звезды.

Естественно, непрерывное создание материи из пустого пространства встретило критику.Как можно получить что-то из ничего? Идея нарушает фундаментальный закон физики: сохранение материи. Согласно этому закону, материю нельзя ни создать, ни разрушить, а только преобразовать в другие формы материи или в энергию. Но скептически настроенным астрономам трудно напрямую опровергнуть непрерывное создание материи, потому что количество материи, образованной в соответствии с теорией устойчивого состояния, очень мало: примерно один атом каждые миллиард лет на каждые несколько кубических футов пространства.

Теория устойчивого состояния, однако, терпит неудачу в одном важном отношении. Если материя постоянно создается повсюду, то средний возраст звезд в любой части Вселенной должен быть одинаковым. Но астрономы обнаружили, что это не так.

Астрономы могут определить возраст галактики или звезды, измерив их расстояние от Земли. Чем дальше от Земли находится объект, тем дольше ему потребовался свет от объекта, чтобы пересечь пространство и достичь Земли. Это означает, что самые далекие объекты, которые мы можем видеть, также являются самыми старыми.

Например, возьмем квазары, маленькие светящиеся точки, излучающие огромное количество радиоэнергии. Поскольку свет от квазаров смещен так далеко к красному концу спектра, астрономы используют закон Хаббла, чтобы вычислить, что эти электростанции находятся на большом расстоянии от Земли и, следовательно, очень старые. Но квазары существуют только на этих огромных расстояниях - ближе нет никого. Если теория устойчивого состояния верна, должны быть как молодые, так и старые квазары. Поскольку астрономы не обнаружили квазаров, которые образовались недавно, они пришли к выводу, что Вселенная должна была измениться с течением времени.Открытие квазаров поставило теорию устойчивого состояния на неустойчивую основу.

Вселенная плазмы и маленькие взрывы

Вам не нравится теория Большого взрыва или теория устойчивого состояния? Меньшая часть астрономов формулирует другие взгляды на создание Вселенной. Одна из моделей возникла в голове нобелевского лауреата Ханнеса Альвена, шведского физика плазмы. Его модель, получившая название «Плазменная Вселенная», начинается с того, что 99 процентов наблюдаемой Вселенной (включая звезды) состоит из плазмы.Плазма, ионизированный газ, проводящий электричество, иногда называют четвертым состоянием материи. Эта теория утверждает, что Большого взрыва никогда не было и что Вселенную пересекают гигантские электрические токи и огромные магнитные поля.

Согласно этой точке зрения, Вселенная существовала вечно, главным образом под влиянием электромагнитной силы. У такой вселенной нет четкого начала и предсказуемого конца. Во Вселенной Plasma галактики собираются вместе в течение гораздо большего промежутка времени, чем в теории Большого взрыва, возможно, за 100 миллиардов лет.

Немногое свидетельств существования плазменной Вселенной происходит из прямых наблюдений за небом. Вместо этого это происходит из лабораторных экспериментов. Компьютерное моделирование плазмы, подвергшейся воздействию полей высокой энергии, выявляет закономерности, похожие на смоделированные галактики. Используя настоящие электромагнитные поля в лаборатории, исследователи также смогли воспроизвести плазменные модели, наблюдаемые в галактиках. Хотя по-прежнему мнение меньшинства, Плазменная Вселенная завоевывает популярность среди молодых астрономов с более лабораторным складом ума, которые ценят твердые эмпирические доказательства выше математических.

Тем временем другая группа астрономов разрабатывает теорию устойчивого состояния, которая фактически соответствует астрономическим наблюдениям. Как и ее предшественница, эта теория устойчивого состояния предлагает вселенную без начала и без конца. Скорее, материя непрерывно создается посредством серии «маленьких взрывов», возможно, связанных с таинственными квазарами. Согласно этой новой теории, галактики будут формироваться со скоростью, определяемой темпами расширения Вселенной. Эти теоретики могут даже объяснить космическое фоновое излучение: они утверждают, что микроволны на самом деле исходят от облака крошечных частиц железа, а не являются остаточным эффектом какого-то изначального взрыва.

Конец Вселенной

Будет ли вселенная продолжать расширяться? Он просто остановится или даже начнет сокращаться? Ответ зависит от количества массы, содержащейся во Вселенной. Если масса Вселенной превышает определенное критическое значение, тогда гравитация должна в конечном итоге остановить все от улетания от всего остального.

При достаточной массе Вселенная в конечном итоге поддастся непреодолимой силе гравитации и снова схлопнется в одну точку - теорию, часто называемую Большим сжатием.Но без достаточной массы Вселенная продолжит расширяться. По состоянию на 2001 год многие ученые пришли к выводу, что последняя гипотеза кажется наиболее вероятной.

В 1998 году астрономы обнаружили еще более примечательную загадку: кажется, что Вселенная ускоряется при расширении, как будто ее притягивает какая-то сила «антигравитации». С тех пор другие астрономы подтвердили это открытие, используя множество методов, и почти подтвердили существование этой загадочной «темной энергии».

Дэвид Фишман

3 теории, которые могут привести к Большому взрыву

По мнению Пола Стейнхардта и Нила Турока, Большой взрыв закончился летним днем ​​1999 года в Кембридже, Англия.Сидя вместе на организованной ими конференции под названием «Школа соединения фундаментальной физики и космологии», два физика внезапно пришли к одной и той же идее. Возможно, наука наконец-то была готова разгадать загадку того, что привело к Большому взрыву. И если так, то, возможно, наука также могла бы ответить на один из самых глубоких вопросов: что было до Большого взрыва?

Стейнхардт и Турок, работая в тесном сотрудничестве с несколькими коллегами-единомышленниками, теперь разработали эти идеи, превратив их в исчерпывающую альтернативу преобладающему взгляду на космологию, подобному генезису.Согласно теории Большого взрыва, вся Вселенная возникла в один момент около 13,7 миллиарда лет назад. Согласно конкурирующей теории, наша Вселенная генерирует и восстанавливает себя в бесконечном цикле творения. Последняя версия циклической модели даже совпадает с ключевыми данными наблюдений, подтверждающими старую точку зрения.

Это наиболее подробный вызов 40-летней ортодоксальности Большого взрыва. Некоторые исследователи идут дальше и представляют себе тип бесконечного времени, который разыгрывается не только в этой вселенной, но и в мультивселенной - множестве вселенных, каждая со своими законами физики и собственной историей жизни.Третьи стремятся пересмотреть само понятие времени, делая бессмысленным понятие «начало».

Все эти еретики-космологи сходятся в одном: Большой взрыв больше не определяет пределы того, как далеко человеческий разум может исследовать.

Большая идея 1: Невероятная громада

Последнее развитие циклической космологии Стейнхардта и Турока, разработанное Евгением Бухбиндером из Института теоретической физики Периметра в Ватерлоо, Онтарио, было опубликовано в декабре прошлого года.Тем не менее, эта работа возникла намного раньше, чем современные теории Вселенной. В четвертом веке нашей эры святой Августин размышлял о том, что делал Господь до первого дня книги Бытия (криво повторяя сердитую реплику о том, что «Он готовил ад для тех, кто слишком заглядывал»). Вопрос стал научным в 1929 году, когда Эдвин Хаббл определил, что Вселенная расширяется. Экстраполированные назад наблюдения Хаббла показали, что космос улетает в сторону от взрывного источника - легендарного Большого взрыва.

В стандартной интерпретации Большого взрыва, который сложился в 1960-х годах, формирующим событием был не взрыв, произошедший в какой-то момент времени и пространства, а взрыв пространства и времени. С этой точки зрения время не существовало заранее. Даже многим исследователям в этой области было трудно проглотить эту пилюлю. Трудно представить, что время только начинается: как вселенная решает, когда пора появиться?

В течение многих лет каждая попытка понять, что происходило в тот момент становления, быстро заходила в тупик.В стандартной модели Большого взрыва Вселенная началась в состоянии почти бесконечной плотности и температуры. В таких крайностях нарушаются известные законы физики. Чтобы вернуться в начало времен, физикам нужна была новая теория, сочетающая общую теорию относительности с квантовой механикой.

Перспективы осмысления Большого взрыва начали улучшаться в 1990-х годах, когда физики усовершенствовали свои идеи в теории струн, многообещающем подходе для примирения теории относительности и квантовых взглядов.Пока никто не знает, совпадает ли теория струн с реальным миром - Большой адронный коллайдер, устройство для уничтожения частиц, которое будет запущено позже в этом году, может дать некоторые подсказки, - но он уже вдохновил на потрясающие идеи о том, как устроена Вселенная. В частности, текущие версии теории струн постулируют семь скрытых измерений пространства в дополнение к трем, с которыми мы сталкиваемся.

Странные и чудесные вещи могут происходить в этих дополнительных измерениях: это то, что вдохновило Стейнхардта (из Принстонского университета) и Турока (из Кембриджского университета) на организацию их роковой конференции в 1999 году.«Мы организовали конференцию, потому что мы оба чувствовали, что стандартная модель Большого взрыва не может объяснить вещи», - говорит Турок. «Мы хотели собрать людей, чтобы обсудить, что теория струн может сделать для космологии».

Ключевым понятием оказалась «брана», трехмерный мир, заключенный в многомерное пространство (термин на языке теории струн является сокращением от «мембрана»). «Когда мы организовывали конференцию, люди только начали говорить о бранах», - вспоминает Стейнхардт.«Вместе мы с Нилом пошли на лекцию, где докладчик описал их как статические объекты. После этого мы оба задали один и тот же вопрос: что произойдет, если браны смогут двигаться? Что произойдет, если они столкнутся? »

Замечательная картина начала складываться в умах двух физиков. Лист бумаги, развевающийся на ветру, представляет собой своего рода двумерную мембрану, проносящуюся сквозь наш трехмерный мир. Для Стейнхардта и Турока вся наша Вселенная - это всего лишь один лист, или трехмерная брана, движущаяся через четырехмерный фон, называемый «балком».«Наша брана не единственная; есть и другие, движущиеся через массу. Подобно тому, как два листа бумаги могут быть снесены вместе во время шторма, различные трехмерные браны могут столкнуться внутри массы.

Уравнения теории струн показали, что каждая трехмерная брана будет оказывать мощное воздействие на другие находящиеся поблизости в балке. Эти силы связаны огромным количеством энергии. Столкновение двух бран может высвободить эти энергии. Изнутри результат выглядел бы как грандиозный взрыв.Что еще более интригующе, теоретические характеристики этого взрыва полностью соответствовали наблюдаемым свойствам Большого взрыва, включая космический микроволновый фон, послесвечение очень жарких первых дней Вселенной. «Это было удивительно для нас, потому что это означало, что столкновение бран могло объяснить одно из ключевых доказательств, которые люди используют в поддержку Большого взрыва», - говорит Стейнхардт.

Три года спустя произошло второе прозрение: Стейнхардт и Турок обнаружили, что их история не закончилась после столкновения.«Мы не искали циклы, - говорит Стейнхард, - но модель естественным образом их производит». После столкновения энергия порождает материю в мирах бран. Затем материя превращается в известную нам вселенную: галактики, звезды, планеты, творения. Пространство внутри бран расширяется, и сначала увеличивается расстояние между бранами (в объеме). Однако когда миры бран расширяются настолько, что их пространство становится почти пустым, силы притяжения между бранами снова сближают мировые листы.Происходит новое столкновение, и начинается новый цикл творения. В этой модели каждый цикл существования - каждый цикл от одного столкновения до следующего - длится около триллиона лет. По таким подсчетам, наша Вселенная все еще находится в зачаточном состоянии, пройдя лишь 0,1 процента текущего цикла.

Циклическая вселенная решает проблему прошлого. С бесконечностью Больших взрывов время тянется навсегда в обоих направлениях. «Большой взрыв не был началом пространства и времени», - говорит Стейнхардт.«Было прежде, и прежде, потому что это накладывает отпечаток на то, что произойдет в следующем цикле».

Не всем нравится такой отход от обычного космологического мышления. Некоторые исследователи считают идеи Стейнхардта и Турока ошибочными или даже опасными. «Один уважаемый ученый сказал мне, что мы должны остановиться, потому что мы подрываем общественное доверие к Большому взрыву», - говорит Турок. Но отчасти привлекательность циклической вселенной заключается в том, что это не просто красивая идея - это проверяемая идея.

Стандартная модель ранней Вселенной предсказывает, что пространство полно гравитационных волн, волн в пространстве-времени, оставшихся с первых мгновений после Большого взрыва. Эти волны выглядят совсем иначе в циклической модели, и эти различия можно будет измерить, как только физики разработают эффективный детектор гравитационных волн. «Может пройти 20 лет, прежде чем у нас появится технология, - говорит Турок, - но в принципе это возможно. Учитывая важность вопроса, я бы сказал, что подождать стоит.

Большая идея 2: Стрела времени

Хотя концепция циклической Вселенной дает возможность исследовать прошлое Большого взрыва, некоторые ученые считают, что Стейнхардт и Турок обошли более глубокую проблему происхождения. «Настоящая проблема - не в начале времени, а в стреле времени», - говорит Шон Кэрролл, физик-теоретик из Калифорнийского технологического института. «Искать вселенную, которая повторяется - это именно то, чего вы не хотите. Циклы по-прежнему дают нам время, которое течет в определенном направлении, и направление времени - это то, что нам нужно объяснять.

В 2004 году Кэрролл и его аспирантка Дженнифер Чен придумали совершенно другой ответ (pdf) на предыдущую проблему. По его мнению, стрелу времени и начало времени нельзя рассматривать отдельно: невозможно понять, что было до Большого взрыва, пока мы не поймем, почему предыдущее предшествует последующему. Подобно Стейнхардту и Туроку, Кэрролл считает, что для поиска ответа необходимо переосмыслить всю вселенную, но Кэрролл не удовлетворен добавлением дополнительных измерений.Он также хочет добавить больше вселенных - намного больше - чтобы показать, что в большой картине время не столько течет, сколько движется симметрично вперед и назад.

Барбур утверждает, что время - это иллюзия, в которой каждое мгновение - каждое «Сейчас» - существует само по себе, завершено и цельно.

Одностороннее движение времени, всегда в будущее, - одна из величайших загадок физики. Уравнения, управляющие отдельными объектами, не заботятся о направлении времени. Представьте себе фильм, в котором сталкиваются два бильярдных шара; невозможно сказать, идет ли фильм вперед или назад.Но если вы соберете миллиард атомов в нечто вроде воздушного шара, прошлое и будущее будут выглядеть совершенно иначе. Лопните воздушный шар, и молекулы воздуха внутри быстро заполнят все пространство; они никогда не бегут назад, чтобы повторно надуть воздушный шар.

В любой такой большой группе объектов система стремится к равновесию. Физики используют термин энтропия, чтобы описать, насколько система далека от равновесия. Чем он ближе, тем выше его энтропия; полное равновесие - это, по определению, максимальное значение.Таким образом, путь от низкой энтропии (все молекулы в одном углу комнаты нестабильны) к максимальной энтропии (молекулы равномерно распределены в комнате, стабильны) определяет стрелу времени. Путь к равновесию отделяет до и после. Как только вы достигнете равновесия, стрела времени больше не имеет значения, потому что изменение больше невозможно.

«Наша Вселенная эволюционировала 13 миллиардов лет, - говорит Кэрролл, - так что вначале она явно не находилась в состоянии равновесия». ВНИМАНИЕ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Скорее, вся материя, энергия, пространство и даже время во Вселенной должны были начаться в состоянии чрезвычайно низкой энтропии.Только так мы могли бы начать с Большого взрыва и закончить удивительно разнообразным космосом сегодняшнего дня. «Поймите, как это произошло, - утверждает Кэрролл, - и вы поймете более крупный процесс, который привел к возникновению нашей Вселенной.

Чтобы продемонстрировать, насколько странна наша Вселенная, Кэрролл рассматривает все другие способы ее создания. Размышляя о диапазоне возможностей, он задается вопросом: «Почему первоначальная установка Вселенной позволила космическому времени иметь направление? Существует бесконечное количество способов, которыми могла быть устроена первоначальная вселенная.Подавляющее большинство из них обладают высокой энтропией ». Эти вселенные с высокой энтропией были бы скучными и инертными; эволюция и изменение были бы невозможны. Такая вселенная не могла производить галактики и звезды, и уж точно не могла поддерживать жизнь.

Это похоже на то, как если бы наша Вселенная была настроена так, что вначале была далека от равновесия, чтобы иметь стрелу времени. Но для физика призыв к точной настройке сродни высказыванию «произошло чудо». Для Кэрролла задача заключалась в том, чтобы найти процесс, который естественным образом объяснил бы низкую энтропию Вселенной, не обращаясь к невероятным совпадениям или (того хуже) к чуду.

Кэрролл обнаружил, что этот процесс спрятан внутри одной из самых странных и захватывающих последних разработок теории Большого взрыва. В 1984 году физик из Массачусетского технологического института Алан Гут предположил, что очень молодая Вселенная пережила короткий период безудержного расширения, который он назвал «инфляцией», и что это расширение взорвало один маленький уголок более ранней Вселенной на все, что мы видим. В конце 1980-х Гут и другие физики, в первую очередь Андрей Линде, ныне работающий в Стэнфорде, увидели, что инфляция может повторяться снова и снова в процессе «вечной инфляции».«В результате карманные вселенные, очень похожие на нашу, могут постоянно появляться из ненадутого фона. Это множество вселенных было неизбежно названо мультивселенной.

Кэрролл нашел в концепции мультивселенной решение как направления, так и происхождения космического времени. Он размышлял о стреле времени еще в аспирантуре в конце 1980-х, когда опубликовал статьи о возможности путешествий во времени с использованием известной физики. Вечная инфляция показала, что недостаточно думать только о времени в нашей Вселенной; он понял, что ему нужно рассматривать это в гораздо более широком контексте мультивселенной.

«Мы задавались вопросом, может ли вечная инфляция работать в обоих направлениях», - говорит Кэрролл. «Это означает, что не было бы необходимости в единственном Большом взрыве. Карманные вселенные всегда вырастали из ненадутого фона. Чтобы заставить вечную инфляцию работать, нужно было найти общую отправную точку: легко достижимое условие, которое будет повторяться бесконечно много раз и позволит вечной инфляции течь в обоих направлениях ».

Полная теория вечной инфляции возникла в голове Кэрролла в 2004 году, когда он вместе со своей студенткой Дженнифер Чен посещал пятимесячный семинар по космологии в Калифорнийском университете в знаменитом Институте теоретической физики Кавли в Санта-Барбаре.«Вы отправляетесь в такое место, как Кавли, и находитесь вдали от обычных обязанностей преподавателя», - говорит Кэрролл. «Это дает вам время собрать все воедино». За эти несколько месяцев Кэрролл и Чен разработали видение расточительной мультивселенной без начала, конца и стрелы времени.

«Все, что вам нужно, - говорит Кэрролл со склонностью физика к преуменьшению, - это начать с пустого места, осколка темной энергии и немного терпения». Темная энергия - скрытый тип энергии, заключенный в пустом пространстве, существование которого убедительно подтверждается недавними наблюдениями - имеет решающее значение, потому что квантовая физика утверждает, что любое энергетическое поле всегда будет давать случайные флуктуации.В теории Кэрролла и Чена колебания фона темной энергии действуют как семена, которые вызывают новые витки инфляции, создавая урожай карманных вселенных из пустого пространства.

«Некоторые из этих карманных вселенных схлопнутся в черные дыры и испарятся, исчезнув с поля зрения», - говорит Кэрролл. «Но другие будут расширяться навсегда. Те, которые расширяются, со временем истончаются. Они становятся новым пустым пространством, из которого может начаться новая инфляция ». Весь процесс может повторяться снова и снова.Удивительно, но направление времени при этом не имеет значения. «Это самое забавное. Вы можете развивать маленькие раздувшиеся вселенные в любом направлении от вашей общей отправной точки », - говорит Кэрролл. В сверхдалеком прошлом нашей Вселенной, задолго до Большого взрыва, могли быть другие большие взрывы, стрелка времени которых бежала в противоположном направлении.

В самом большом масштабе мультивселенная подобна пене взаимосвязанных карманных вселенных, полностью симметричных относительно времени.Некоторые вселенные движутся вперед, но в целом равное количество движется назад. В бесконечном пространстве в бесконечных вселенных нет ограничений на энтропию. Он всегда может увеличиваться; каждая вселенная рождается с пространством (и энтропией) для развития. Большой взрыв - это просто наш Большой взрыв, и он не уникален. Вопрос о том, что было раньше, исчезает, потому что мультивселенная всегда существовала и всегда будет, эволюционируя, но - в статистическом смысле - всегда одна и та же.

Завершив работу над мультивселенной с Ченом, Кэрролл почувствовал приступ ужаса.«Когда вы заканчиваете что-то подобное, это горько-сладко. Решать сложные задачи можно в погоне за удовольствием », - говорит он. К счастью для него, погоня продолжается. «Наша газета действительно выражает точку зрения меньшинства», - признает он. Сейчас он усиленно работает над последующими документами, конкретизируя детали и подкрепляя свои аргументы.

Большая идея 3: Сейчас уже есть

В 1999 году, когда Стейнхардт и Турок собирались в Кембридже, а Кэрролл размышлял о значении мультивселенной, мятежный физик Джулиан Барбур опубликовал «Конец времени» - манифест, в котором предлагалось предпринять попытку То, что произошло до Большого взрыва, было основано на фундаментальной ошибке.Барбур настаивал, что нет необходимости искать решение проблемы начала времени, потому что времени на самом деле не существует.

Еще в 1963 году статья в журнале изменила жизнь Барбура. В то время он был всего лишь молодым аспирантом-физиком, отправлявшимся в расслабляющую поездку в горы. «Я учился в Германии и взял с собой на каникулы в Баварские Альпы статью, - говорит 71-летний Барбур. - Она была о великом физике Поле Дираке. Он размышлял о природе времени и пространства в теории относительности.После окончания статьи у Барбура остался вопрос, от которого он никогда не смог бы отказаться: что такое время? Он не мог перестать думать об этом. Он развернулся на полпути к горе и так и не добрался до вершины.

Возможно, некоторые вселенные движутся вперед во времени, в то время как такое же количество движется назад; Большой взрыв - это просто наш Большой взрыв.

«Я знал, что на то, чтобы разобраться в моем вопросе, потребуются годы», - вспоминает Барбур. «У меня не было возможности сделать нормальную академическую карьеру, публиковать статью за статьей, и по-настоящему добиться чего-либо.«С твердой решимостью он оставил академическую физику и поселился в сельской Англии, поддерживая свою семью, переводя русские научные журналы. Тридцать восемь лет спустя, все еще живя в том же доме, он нашел достаточно ответов, чтобы подняться из безвестности и привлечь внимание мирового сообщества физиков.

В 1970-х годах Барбур начал публиковать свои идеи в уважаемых, но немного нетрадиционных журналах, таких как The British Journal for the Philosophy of Science and Proceedings of the Royal Society A.Он продолжает публиковать статьи, в последний раз со своим сотрудником Эдвардом Андерсоном (pdf) из Кембриджского университета. Аргументы Барбура сложны, но его основная идея остается простотой: нет времени. «Если вы попытаетесь успеть вовремя, оно всегда ускользает от вас», - говорит Барбур со своим обезоруживающим английским шармом. «Я чувствую, что люди не могут удержать время, потому что его вообще нет».

Исаак Ньютон думал о времени как о реке, протекающей повсюду с одинаковой скоростью.Альберт Эйнштейн объединил пространство и время в единое целое, но он по-прежнему придерживался концепции времени как меры изменения. По мнению Барбура, невидимой реки времени нет. Вместо этого он думает, что изменение просто создает иллюзию времени, когда каждый отдельный момент существует сам по себе, завершен и целостен. Он называет эти моменты «сейчас».

«Пока мы живем, кажется, что мы переживаем череду моментов. Вопрос в том, какие они? » - спрашивает Барбур. Его ответ: «Каждое Сейчас» - это расположение всего во вселенной.«У нас сложилось сильное впечатление, что у вещей есть определенные позиции относительно друг друга. Я стремлюсь абстрагироваться от всего, что мы не можем видеть прямо или косвенно, и просто сохраняю идею одновременного сосуществования множества разных вещей. Есть просто Сейчас, не больше и не меньше ».

Barbour’s Nows можно представить как страницы романа, оторванные от корешка книги и случайно брошенные на пол. Каждая страница - это отдельный объект. Если расположить страницы в определенном порядке и перемещаться по ним шаг за шагом, создается впечатление, что история разворачивается.Тем не менее, независимо от того, как мы размещаем листы, каждая страница будет полной и независимой. Для Барбура реальность - это просто физика этих моментов, взятых вместе в целом.

«Что меня действительно интригует, так это то, что совокупность всех возможных моментов имеет особую структуру», - говорит он. «Вы можете думать об этом как о пейзаже или стране. Каждая точка в этой стране - это Сейчас, и я называю эту страну Платонией »в связи с концепцией Платона о более глубокой реальности,« потому что она вне времени и создана по совершенным математическим правилам.Платония - это настоящая арена вселенной ».

В Платонии одновременно существуют все возможные конфигурации Вселенной, все возможные места расположения каждого атома. Нет прошлого момента, который перетекает в момент будущего; вопрос о том, что было до Большого взрыва, никогда не возникает, потому что космологии Барбура нет времени. Большой взрыв - это не событие из далекого прошлого; это всего лишь одно особое место в Платонии.

Наша иллюзия прошлого возникает потому, что каждое Сейчас в Платонии содержит объекты, которые на языке Барбура появляются как «записи».«Единственное свидетельство, которое у вас есть на прошлой неделе, - это ваша память, но теперь память исходит из стабильной структуры нейронов в вашем мозгу. Единственное свидетельство прошлого Земли, которое у нас есть, - это горные породы и окаменелости, но это всего лишь стабильные структуры в форме минералов, которые мы изучаем в настоящем. Все, что у нас есть, - это эти записи, и они есть только в этом Now », - говорит Барбур. По его теории, одни Сейчас связаны с другими в пейзаже Платонии, хотя все они существуют одновременно. Эти связи создают видимость последовательности из прошлого в будущее, но на самом деле нет потока времени от одного Сейчас к другому.

«Подумайте о целых числах», - говорит Барбур. «Каждое целое число существует одновременно. Но некоторые целые числа связаны по структуре, например, набор всех простых чисел или чисел, которые вы получаете из ряда Фибоначчи ». Тем не менее, число 3 не встречается в прошлом числа 5, равно как и Большой взрыв существовал в прошлом 2008 года.

Эти идеи могут звучать как ночные разговоры в комнате общежития, но у Барбура есть потратил четыре десятилетия, выковывая их жестким языком математической физики (pdf).Он соединил Платонию с уравнениями квантовой механики, чтобы разработать математическое описание «неизменной» физики. Вместе с ирландским сотрудником Найла О Мурчадха из Национального университета Ирландии в Корке Барбур продолжает переформулировать бессрочную версию теории Эйнштейна.

Так что же произошло на самом деле?

Для каждой из альтернатив Большому взрыву легче продемонстрировать привлекательность идеи, чем доказать ее правильность. Циклическая космология Стейнхардта и Турока может объяснить важные свидетельства, обычно приводимые в поддержку Большого взрыва, но до экспериментов, которые могли бы превзойти его, потребуются десятилетия.Модель мультивселенной Кэрролла зависит от умозрительной интерпретации инфляционной космологии, которая сама по себе слабо проверена.

Barbour стоит на самом дальнем краю. У него нет возможности проверить свою концепцию Платонии. Сила его идей во многом зависит от красоты их формулировок и их способности объединять физику. «То, что мы сейчас работаем, просто и логично, - говорит Барбур, - и поэтому я считаю, что это показывает нам нечто фундаментальное».

Выигрыш, который предлагает Barbour, - это не просто математическое решение, а философское решение.Вместо всех противоречивых представлений о Большом взрыве и о том, что было раньше, он предлагает выход. Он предлагает отпустить прошлое - всю идею прошлого - и жить полноценно, счастливо в Настоящем моменте.

В одной модели каждый цикл существования длится триллион лет. По таким подсчетам, наша Вселенная все еще находится в зачаточном состоянии.

Происхождение Вселенной, Земли и Жизни | Наука и креационизм: взгляд из Национальной академии наук, второе издание

молекул в единицах, которые могли быть первыми живыми системами.Недавнее предположение включает возможность того, что первые живые клетки могли возникнуть на Марсе, засевая Землю через множество метеоритов, которые, как известно, путешествуют с Марса на нашу планету.

Конечно, даже если бы живая клетка была создана в лаборатории, это не доказало бы, что природа пошла тем же путем миллиарды лет назад. Но задача науки - давать правдоподобные естественные объяснения природных явлений. Изучение происхождения жизни - это очень активная область исследований, в которой наблюдается значительный прогресс, хотя ученые единодушны в том, что ни одна из текущих гипотез до сих пор не подтвердилась.История науки показывает, что такие, казалось бы, неразрешимые проблемы, как эта, могут быть решены позже в результате достижений теории, инструментов или открытия новых фактов.

Взгляды креационистов на происхождение Вселенной, Земли и жизни

Многие религиозные деятели, включая многих ученых, считают, что Бог создал вселенную и различные процессы, управляющие физической и биологической эволюцией, и что эти процессы затем привели к созданию галактик, нашей солнечной системы и жизни на Земле.Эта вера, которую иногда называют «теистической эволюцией», не противоречит научным объяснениям эволюции. Действительно, он отражает замечательный и вдохновляющий характер физической вселенной, выявленный космологией, палеонтологией, молекулярной биологией и многими другими научными дисциплинами.

Сторонники «науки о сотворении» придерживаются различных точек зрения. Некоторые утверждают, что Земля и Вселенная относительно молоды, возможно, всего от 6000 до 10 000 лет. Эти люди часто считают, что нынешняя физическая форма Земли может быть объяснена «катастрофизмом», включая всемирный потоп, и что все живые существа (включая людей) были созданы чудесным образом, по существу в тех формах, которые мы сейчас находим.

Другие сторонники креационной науки готовы признать, что Земля, планеты и звезды могли существовать миллионы лет. Но они утверждают, что различные типы организмов, и особенно люди, могли возникнуть только при сверхъестественном вмешательстве, потому что они демонстрируют «разумный замысел».

В этом буклете оба взгляда - «Молодая Земля» и «Старая Земля» называются «креационизмом» или «особым творением».

Нет достоверных научных данных или расчетов, подтверждающих уверенность в том, что Земля была создана всего несколько тысяч лет назад.В этом документе обобщено огромное количество свидетельств того, что Вселенная, наша галактика, Солнечная система и Земля, а также Земля велика, из астрономии, астрофизики, ядерной физики, геологии, геохимии и геофизики. Независимые научные методы последовательно дают возраст Земли и Солнечной системы около 5 миллиардов лет, а возраст нашей Галактики и Вселенной в два-три раза больше. Эти выводы делают происхождение Вселенной в целом понятным, придают согласованность многим различным отраслям науки и формируют основные выводы замечательной совокупности знаний о происхождении и поведении физического мира.

Научное происхождение Вселенной

Научное происхождение Вселенной

Черные дыры

В истории науки неоднократно случалось, что благодаря известности личного вклада, теории или прорыва в какой-либо области науки, они отталкивают свои взгляды от взглядов других менее известных людей. Это происходит независимо от правильности их объяснения. Исаак Ньютон отказывался выслушивать опровержения некоторых своих идей, как и Нилс Бор и даже Альберт Эйнштейн.Где-то по пути поиск истины в науке теряется в человеке, отождествляющем себя с истинностью своих идей.

На протяжении всей истории человечества существовало два набора противоположных идей, верований, теорий или учений о происхождении Вселенной. Он либо существовал вечно, не имея ни начала, ни конца, либо был создан в какой-то момент времени и в конечном итоге придет к концу. В первой части мы исследовали ранние культурные, религиозные и отчасти философские взгляды на то, как возникла Вселенная.Мы также потратили немного времени на изучение некоторых идей о нашем собственном происхождении с религиозной и научной точки зрения. В этом разделе мы проведем краткий экскурс по различным теориям, выдвинутым наукой для объяснения происхождения Вселенной.

На сегодняшний день наиболее популярной теорией в науке является теория большого взрыва, идея о том, что Вселенная возникла в определенный момент времени примерно 15–20 миллиардов лет назад. За последние 25 лет эта теория выдвинулась на передний план космологии.Вы встретитесь с некоторыми из ключевых фигур, теории которых заложили основу Большого взрыва. Однако, как вы увидите по мере продвижения по этому разделу, эта теория является продуктом не только науки, но и времени, в котором мы живем. И хотя наука хотела бы считать себя удаленной от внешних влияний, на нее не могут не влиять люди, работающие в этой области.

Космологический маятник

Универсальные константы

Zeitgeist - это немецкое слово, которое буквально означает дух времени.Это также может относиться к тенденции мыслей и чувств в течение определенного периода. Он описывает общее настроение культуры или общества, основанное на одном или многих влияниях, исходящих от науки, религии, искусства, политики или даже экономики.

Я не думаю, что мне нужно снова повторять вам два основных подхода к изучению космологии. Я уверен, что вы помните, какие они есть. В наши дни эти два метода проявились, а в некоторых случаях кристаллизовались в две отдельные области науки: эксперимент и математическая теория.Теоретики часто не имеют ничего общего с реальными экспериментами, и то же самое можно сказать об экспериментаторах. И именно это различие было источником разногласий между различными научными группами, которые выдвигали одну точку зрения на происхождение Вселенной над другой. Чтобы понять, о чем я говорю, давайте проследим развитие теории большого взрыва на различных этапах. По пути у вас будет возможность познакомиться с противоположной теорией и изучить некоторые из причин, по которым вообще был разработан Большой взрыв.

Наука как методология любит видеть себя открывателем истинной природы вселенной, своего рода провидцем, который может заглядывать за пелену видимости. Однако наукой занимаются ученые, люди, которые несут с собой целый набор предрасположенностей, ценностей и убеждений. И, как и в любом другом сегменте нашего общества, некоторые будут серьезно инвестировать в свои позиции и точки зрения, относясь к себе довольно серьезно и заявляя о правильности своих взглядов. Конечно, есть много людей, которые не занимают эту позицию и стремятся выйти за рамки какой-либо личной привязанности к тому, кто они есть и что они обнаружили.

Универсальные константы

Ex nihilo - латинский термин, который в переводе означает «из ничего». Это была идея, представленная святым Августином, которая позже стала церковной доктриной. Это его философское объяснение того, как Бог создал все из ничего, что, что довольно интересно, может быть применено и к Большому взрыву. Откуда взялось все, что содержалось в Большом взрыве, и почему оно вообще произошло?

Большая часть истории космологии и ее теорий является отражением этих типов людей и культур, в которых они жили.Часто наиболее широко распространенная теория становится именно такой из-за сильной личности, стоящей за идеями. И хотя наука пытается избежать влияния внешних факторов, ученые, которые ее практикуют, по-прежнему являются продуктом культуры и времени, в котором они живут. Другими словами, что касается космологических теорий, то вопрос о том, существовала ли Вселенная всегда или возникла взрывом, нельзя отделить от влияния духа времени или духа времени. Хотя у нас недостаточно времени, чтобы подробно вернуться к истории и показать вам, как космологический маятник качался от одной теории к другой, я могу дать вам приблизительный набросок и несколько примеров некоторых периодов времени, в которые это происходило.Просто помните, что всегда есть много факторов, влияющих на развитие той или иной конкретной парадигмы.

  • В Древней Греции две основные концепции: эмпирический (наблюдение и практическое применение) и дедуктивный (теоретический и математический) методы были тесно связаны с конфликтом между свободными гражданами и рабским населением. Эмпирическая система развивалась вместе со свободными ремесленниками и торговцами, в то время как дедуктивный метод, который может игнорировать наблюдение и практическое применение, возник на фоне пренебрежения рабовладельцами к ручному труду.
  • На систему Птолемея сильно повлиял дедуктивный метод (теория и математика в отличие от наблюдения). Также в это время мы находим введение в сегодняшнюю центральную тему космологии - происхождение Вселенной из ничего. Эта идеология была разработана на основе несколько пессимистических и авторитарных мировоззрений двух отцов-основателей церкви, Тертуллиана и святого Августина. Доктрина сотворения ex nihilo послужила основой религиозной социальной системы, которая рассматривала мир как распадающийся от идеального начала до позорного конца.
  • Во время подъема науки две центральные концепции средневековой космологии были ниспровергнуты: идея распадающейся Вселенной, конечной в пространстве и времени, и вера в то, что мир может быть познан с помощью разума и авторитета. Дедуктивная конечная система Птолемея была заменена эмпирической, вечной и бесконечной вселенной, которая развивалась естественными процессами. Это была вселенная, которую можно было познать с помощью наблюдений и экспериментов. Триумф науки был связан с ниспровержением феодальной системы, из которой выросла свободная рабочая сила и общество купцов, ремесленников и свободных крестьян, которые ставили под сомнение авторитарную власть в религиозных, политических и экономических целях.
  • Сегодняшний взгляд на космологию гораздо ближе к системам Птолемея и Августина, чем к Галилею и Кеплеру. Вселенная Большого взрыва конечна, которая в конечном итоге закончится либо большим похолоданием, либо большим кризисом (мы рассмотрим обе эти теории в суперсимметрии, суперструнах и голограммах), которая, как и средневековый космос, конечна во времени. Вселенная популярной космологии является продуктом одного уникального события, непохожего ни на что другое, что когда-либо происходило, точно так же, как средневековая вселенная рассматривалась как продукт творения.

И, наконец, чтобы показать вам, как то, что я изложил выше, может проявляться в жизнях людей, живших в те времена, вот несколько цитат некоторых известных людей.

Что делает Бога понятным, так это то, что его невозможно понять.

Тертуллиан, г. 200 г. н. Э.

Если я не могу смеяться на небесах, я не хочу туда идти.

Мартин Лютер, ок. 1460

Религия учит людей тому, как попасть на небеса, а не тому, как они идут.

Галилей Галилео, ок.1630

Самое непонятное во Вселенной - это то, что она постижима.

Альберт Эйнштейн, 1935

Чем более постижима Вселенная, тем больше она кажется бессмысленной.

Стивен Вайнберг, 1977

Мы, возможно, подошли к концу поиска основных законов природы.

Стивен Хокинг, 1988

Выдержки из Полное руководство для идиотов по теориям Вселенной 2001 Гэри Ф. Моринг.Все права защищены, включая право на полное или частичное воспроизведение в любой форме. Используется по договоренности с Alpha Books , членом Penguin Group (USA) Inc.

Чтобы заказать эту книгу непосредственно у издателя, посетите веб-сайт Penguin USA или позвоните по телефону 1-800-253-6476. Вы также можете приобрести эту книгу на Amazon.com и Barnes & Noble.

5 Альтернатив теории большого взрыва - у нее есть соперники?

Обычный человек знает что-то о физической вселенной - это идея Большого взрыва.Также называемая космологической моделью инфляции, консенсус считает, что это наиболее жизнеспособное объяснение происхождения всего сущего.

Тем не менее, многие ученые считают, что идея единственного колоссального взрыва света не соответствует теории универсального происхождения. Частично это связано с тем, что наука - это основанный на фактах эмпирический процесс накопления знаний об объективном мире, а это означает, что принятые теории всегда будут идти туда, куда указывают доказательства.

По современным оценкам, возраст Вселенной составляет около 13 лет.8 миллиардов лет, а homo sapiens (нас) появился всего 200 тысяч лет назад. После того, как мы разожгли огонь и изобрели цивилизацию, нам потребовалось около 100 лет назад, чтобы теоретизировать Большой взрыв. Но хотя данные подтверждают модель Большого взрыва и ставят под сомнение конкурирующие теории, однажды может появиться новая модель, способная превзойти консенсус.

Распаковка происхождения вселенной с помощью Большого взрыва

Вопросы о том, как в конечном итоге возникла вселенная, поднимаются больше о ее конце. Но философы и физики ломали брови над этими вопросами на протяжении тысячелетий.По своей сути теория Большого взрыва предполагает, что вся материя Вселенной возникла в одно и то же время, примерно 13,8 миллиарда лет назад.

Хотя трудно говорить о «до» при обсуждении начала всего пространства и времени (как может быть «до», до «до»? », Совокупность материи взорвалась из уплотненного шара с плотностью и сильная жара, приближающаяся к бесконечности, называемая сингулярностью. По неизвестным причинам эта сингулярность внезапно расширилась в невообразимо сильном взрыве, и Вселенная, как мы ее знаем, началась.

1. Стационарная модель

Изображение сотен галактик, полученное космическим телескопом Хаббла. Источник: NASA

Одной из старых конкурирующих теорий Большого взрыва является модель устойчивой Вселенной. Это отрицает возможность начала и конца Вселенной - вместо этого выбирая постоянно расширяющуюся Вселенную, которая, тем не менее, сохраняет ту же общую плотность.

Другими словами, стационарная Вселенная всегда идентична, но постоянно увеличивается в масштабе.

В этой модели галактики, планеты и другие формы материи заблокированы в непрерывном воссоздании, и, поскольку плотность остается прежней, старые астрономические объекты становятся ненаблюдаемыми, поскольку их место занимают новые создания.

Эта теория была первоначально предложена сэром Джеймсом Хопвудом Джинсом в 1928 году и получила дальнейшее развитие в конце 1940-х годов Германом Бонди, Фредом Хойлом и Томасом Голдом.

Покойный космолог Джеффри Бербидж в начале своей карьеры выступал за установившуюся космологию и был одним из последних серьезных космологов, которые в конечном итоге отказались от этой теории - даже после того, как новые данные прямо опровергли ее.

Однако, вместо того, чтобы запрыгнуть на поезд Большого взрыва, Бербидж разработал новую модель, названную колеблющейся Вселенной, согласно которой Вселенная претерпевает множество маленьких больших взрывов, как это происходит во Вселенной.

2. Отскакивающая космологическая модель

Если или когда случился Большой взрыв, Вселенная расширилась из единственной точки, гравитация и плотность которой приблизились к бесконечности, и с тех пор продолжала расширяться. Это называется инфляционной моделью.

Модель подпрыгивающей космологии, большого отскока или циклической Вселенной предполагает быстрое расширение Вселенной, подобное Большому взрыву.Но он добавляет функцию перемотки, учитывающую не только расширение, но и сжатие Вселенной.

Циклическая вселенная сжимается до минимального объема, а затем "возвращается" обратно в последующее расширение. Другой вариант предлагает космос, который отразился только один раз. В этом случае современная Вселенная возникла после более раннего сжатия (простирающегося в бесконечное прошлое бесконечного рассеяния). Согласно теории однократного отскока, сегодняшняя Вселенная будет расширяться вечно.

Эта теория была впервые предложена Джулиано Сезар Сильва Невес в статье, опубликованной в журнале Общая теория относительности и гравитации .Невес - научный сотрудник Института математики, статистики и научных вычислений (IMECC-UNICAMP) Университета Кампинаса, Бразилия.

Рентгеновское изображение "галактики фейерверков". Источник: NASA

3. Теория плазмы или электрической вселенной

В модели электрической вселенной гравитация уступает место плазме и электромагнетизму. В этой теории плазма играет неотъемлемую роль в космологических событиях и фундаментальном порядке Вселенной, предлагая электрические токи, которые текут по плазменным нитям, способные формировать галактики и приводить их в действие.Эти токи текут в звезды, питая их, как люминесцентные лампы. Они вызывают рождение планет.

Теория Электрической Вселенной была впервые предложена лауреатом Нобелевской премии физиком Ханнесом Альвеном в 1930-х годах. Альфвен утверждал, что если бы плазма пронизывала Вселенную, она могла бы переносить электрические токи, способные генерировать галактическое магнитное поле. Позже он получил Нобелевскую премию за свои работы по магнитогидродинамике.

Однако нет никаких доказательств в пользу теории Электрической Вселенной, и она не соответствует определению теории Национальной академии наук, поскольку не имеет предсказательной силы в эмпирическом мире природных явлений, с помощью которых мы могли бы наблюдать физические признаки его присутствие.Но, тем не менее, он приобрел популярность благодаря ряду ученых-непрофессионалов и пользователей YouTube, которые ищут более простой способ объяснить Вселенную.

4. Теория происхождения черной дыры

Теория черной дыры предполагает, что Вселенная возникла из черной дыры из другой вселенной. В этой модели мы живем за пределами ее горизонта событий.

Эта теория существует уже некоторое время. Первоначально исследователи из Университета Периметра представили документ, в котором подробно описывалось, как черные дыры могут быть источником нашей Вселенной.В другой и более поздней версии, предложенной физиком-теоретиком Никодемом Поплавски из Университета Индианы, наблюдаемая Вселенная - это внутренность черной дыры, существующей как одна из, возможно, многих внутри более крупной родительской вселенной или мультивселенной.

Если это правда, мы можем сказать, что каждая черная дыра - это дверь в новую вселенную. Но поскольку мы не можем пересечь горизонт событий (живыми), вероятно, нет никакого способа подтвердить или опровергнуть теорию.

5. Теория моделирования

Изображение черной дыры, смоделированное на компьютере.Источник: NASA

Многим людям в Кремниевой долине нравится идея, которая, если правда, кажется, превосходит все остальные: возможность жизни в колоссальной симуляции. Эта идея привлекла внимание общественности к таким фильмам, как «Матрица», и неожиданным комментариям генерального директора Tesla Илона Маска, который сказал в интервью, что это вполне возможно, несмотря на отсутствие доказательств.

Позже ученые исследовали эту идею в 2017 году, но результаты показывают, что наша Вселенная не является созданием компьютерной программы.Исследование было проведено физиками-теоретиками из Оксфордского университета в Великобритании.

Смоделированной вселенной нужен компьютер больше, чем ее создание.

Исследователи из Оксфорда изучали возможность создания компьютера, способного вычислять все в этой вселенной. Но такой гипотетический компьютер должен быть достаточно мощным, чтобы рассчитывать движение каждой частицы.

Излишне говорить, что это сложный расчет. Чтобы компьютер мог записать данные даже по нескольким электронам, его памяти нужно больше атомов, чем есть во всей вселенной, а с добавлением всего лишь нескольких частиц сложность возрастает экспоненциально.

Следовательно, можно с уверенностью сказать, что мы не продукт инопланетной Playstation.

Научное мировоззрение всегда будет развиваться

Теория Большого взрыва остается наиболее широко распространенным объяснением происхождения Вселенной. Но в эмпирической науке никакая теория не может длиться вечно.

Научная модель Вселенной постоянно меняется по мере того, как достижения в таких областях, как квантовая механика и гравитация, борются за объединение теорий о фундаментальных законах Вселенной.Но хотя модель Большого взрыва полностью не доказана, на данный момент это наилучшее возможное объяснение, использующее все доступные научные данные.

Эволюция Вселенной

Примечание редактора (8.10.19): космолог Джеймс Пиблз получил Нобелевскую премию по физике 2019 года за свой вклад в теорию возникновения и развития нашей Вселенной. Он описывает эти идеи в этой статье, которую он написал в соавторстве для Scientific American в 1994 году.

В определенный момент примерно 15 миллиардов лет назад вся материя и энергия, которые мы можем наблюдать, сконцентрированные в области размером меньше десяти центов, начали расширяться и остывать с невероятно быстрой скоростью.К тому времени, когда температура упала в 100 миллионов раз по сравнению с температурой ядра Солнца, силы природы приобрели свои нынешние свойства, и элементарные частицы, известные как кварки, свободно бродили в море энергии. Когда Вселенная расширилась еще в 1000 раз, вся материя, которую мы можем измерить, заполнила область размером с Солнечную систему.

В то время свободные кварки были заключены в нейтроны и протоны. После того, как Вселенная выросла еще в 1000 раз, протоны и нейтроны объединились, чтобы сформировать атомные ядра, включая большую часть гелия и дейтерия, присутствующих сегодня.Все это произошло в течение первой минуты расширения. Однако условия для захвата электронов атомными ядрами были еще слишком жаркими. Нейтральные атомы в изобилии появились только после того, как расширение продолжалось в течение 300 000 лет, и Вселенная стала в 1000 раз меньше, чем сейчас. Затем нейтральные атомы начали сливаться в газовые облака, которые позже превратились в звезды. К тому времени, когда Вселенная расширилась до одной пятой от нынешнего размера, звезды сформировали группы, которые можно было узнать как молодые галактики.

Когда Вселенная уменьшилась вдвое, в результате ядерных реакций в звездах образовалось большинство тяжелых элементов, из которых были сделаны планеты земной группы. Наша солнечная система относительно молода: она сформировалась пять миллиардов лет назад, когда Вселенная была на две трети своего нынешнего размера. Со временем образование звезд истощило запасы газа в галактиках, и, следовательно, популяция звезд уменьшается. Через пятнадцать миллиардов лет такие звезды, как наше Солнце, будут относительно редкими, что сделает Вселенную гораздо менее гостеприимным местом для таких наблюдателей, как мы.

Наше понимание происхождения и эволюции Вселенной - одно из величайших достижений науки 20 века. Эти знания получены в результате десятилетий инновационных экспериментов и теорий. Современные телескопы на земле и в космосе обнаруживают свет галактик на расстоянии миллиардов световых лет, показывая нам, как выглядела Вселенная в молодости. Ускорители элементарных частиц исследуют основы физики высокоэнергетической среды ранней Вселенной. Спутники обнаруживают космическое фоновое излучение, оставшееся с ранних стадий расширения, обеспечивая изображение Вселенной в самых больших масштабах, которые мы можем наблюдать.

Все наши усилия по объяснению этого обилия данных воплощены в теории, известной как стандартная космологическая модель или космология большого взрыва. Основное утверждение теории состоит в том, что в крупномасштабном среднем Вселенная расширяется почти однородным образом из плотного раннего состояния. В настоящее время у теории большого взрыва нет фундаментальных проблем, хотя внутри самой теории, безусловно, есть нерешенные вопросы. Например, астрономы не уверены, как образовались галактики, но нет оснований полагать, что этот процесс не происходил в рамках Большого взрыва.Действительно, на сегодняшний день предсказания теории выдержали все испытания.

Тем не менее, модель большого взрыва зашла так далеко, и многие фундаментальные загадки остаются. Какой была Вселенная до того, как она расширялась? (Никакие сделанные нами наблюдения не позволяют нам оглянуться назад за тот момент, когда началось расширение.) Что произойдет в далеком будущем, когда последняя из звезд исчерпает запасы ядерного топлива? Пока никто не знает ответов.

Наша вселенная может рассматриваться во многих отношениях мистиками, теологами, философами или учеными.В науке мы идем медленным путем: мы принимаем только то, что проверено экспериментом или наблюдением. Альберт Эйнштейн дал нам хорошо проверенную и принятую теорию относительности, которая устанавливает отношения между массой, энергией, пространством и временем. Эйнштейн показал, что однородное распределение материи в пространстве хорошо согласуется с его теорией. Он предположил без обсуждения, что Вселенная статична и неизменна в среднем крупномасштабном [см. «Как космология стала наукой», Стивен Г.Щетка; НАУЧНЫЙ АМЕРИКАН, август 1992 г.].

В 1922 году русский теоретик Александр А. Фридман понял, что вселенная Эйнштейна нестабильна; малейшее возмущение заставит его расшириться или сузиться. В то время Весто М. Слайфер из обсерватории Лоуэлла собирал первые доказательства того, что галактики действительно расходятся. Затем, в 1929 году, выдающийся астроном Эдвин П. Хаббл показал, что скорость, с которой галактика удаляется от нас, примерно пропорциональна ее расстоянию от нас.

НЕСКОЛЬКО ИЗОБРАЖЕНИЙ далекого квазара ( слева, ) являются результатом эффекта, известного как гравитационное линзирование. Эффект возникает, когда свет от удаленного объекта отклоняется гравитационным полем промежуточной галактики. В этом случае галактика, которая видна в центре, дает четыре изображения квазара. Фотография сделана с помощью телескопа Hubble .

Существование расширяющейся Вселенной подразумевает, что космос эволюционировал из плотной концентрации материи в настоящее широко распространенное распределение галактик.Фред Хойл, английский космолог, первым назвал этот процесс Большим взрывом. Хойл намеревался опровергнуть эту теорию, но имя было настолько запоминающимся, что приобрело популярность. Однако в некоторой степени ошибочно описывать расширение как некий тип взрыва материи вдали от какой-то конкретной точки пространства.

Это совсем не картина: во вселенной Эйнштейна понятия пространства и распределения материи тесно связаны; наблюдаемое расширение системы галактик показывает развертывание самого пространства.Существенная особенность теории состоит в том, что средняя плотность в космосе уменьшается по мере расширения Вселенной; распределение материи не образует видимого края. При взрыве самые быстрые частицы движутся в пустое пространство, но в космологии большого взрыва частицы равномерно заполняют все пространство. Расширение Вселенной мало повлияло на размер галактик или даже скоплений галактик, которые связаны гравитацией; между ними просто открывается пространство. В этом смысле расширение похоже на поднимающуюся буханку хлеба с изюмом.Тесто аналогично космосу, а изюм - скоплениям галактик. По мере расширения теста изюм раздвигается. Более того, скорость, с которой разделяются любые два изюма, прямо и положительно зависит от количества разделяющего их теста.

Доказательства расширения Вселенной накапливались около 60 лет. Первая важная подсказка - это красное смещение. Галактика излучает или поглощает световые волны одних длин сильнее, чем другие. Если галактика удаляется от нас, эти особенности излучения и поглощения смещаются в сторону более длинных волн, то есть они становятся краснее по мере увеличения скорости удаления.Это явление известно как красное смещение.

Измерения Хаббла показали, что красное смещение далекой галактики больше, чем у более близкой к Земле. Это соотношение, известное теперь как закон Хаббла, - именно то, что можно было бы ожидать от равномерно расширяющейся Вселенной. Закон Хаббла гласит, что скорость удаления галактики равна ее расстоянию, умноженному на величину, называемую постоянной Хаббла. Эффект красного смещения в близлежащих галактиках относительно невелик, и для его обнаружения требуется хорошая аппаратура.Напротив, красное смещение очень далеких объектов - радиогалактик и квазаров - представляет собой потрясающее явление; некоторые, кажется, удаляются со скоростью более 90 процентов от скорости света.

Хаббл внес свой вклад в еще одну важную часть картины. Он подсчитал количество видимых галактик в разных направлениях на небе и обнаружил, что они кажутся довольно равномерно распределенными. Значение постоянной Хаббла казалось одинаковым во всех направлениях, что является необходимым следствием равномерного расширения.Современные исследования подтверждают фундаментальный постулат о том, что Вселенная однородна в больших масштабах. Хотя карты распределения ближайших галактик демонстрируют комковатость, более глубокие обзоры обнаруживают значительную однородность.

Млечный Путь, например, находится в узле из двух дюжин галактик; они, в свою очередь, являются частью комплекса галактик, который выступает из так называемого местного сверхскопления. Иерархия кластеризации прослеживается до размеров около 500 миллионов световых лет.Флуктуации средней плотности вещества уменьшаются по мере увеличения масштаба исследуемой структуры. На картах, покрывающих расстояния, близкие к наблюдаемому пределу, средняя плотность вещества изменяется менее чем на одну десятую процента.

Чтобы проверить закон Хаббла, астрономам нужно измерить расстояния до галактик. Один из методов измерения расстояния - это наблюдение за видимой яркостью галактики. Если одна галактика на ночном небе в четыре раза слабее, чем другая сопоставимая галактика, то ее можно оценить как вдвое дальше.Это ожидание теперь проверено во всем видимом диапазоне расстояний.

ОДНОРОДНОЕ РАСПРЕДЕЛЕНИЕ галактик очевидно на карте, которая включает объекты от 300 до 1 000 миллионов световых лет от нас. Единственная неоднородность, разрыв около центральной линии, возникает из-за того, что часть неба закрыта Млечным путем. Майкл Штраус из Института перспективных исследований в Принстоне, штат Нью-Джерси, создал карту, используя данные с инфракрасного астрономического спутника НАСА .

Некоторые критики теории указывали, что галактика, которая кажется меньше и слабее, на самом деле не может быть более далекой.К счастью, есть прямое указание на то, что объекты с большим красным смещением действительно находятся дальше. Доказательства получены из наблюдений за эффектом, известным как гравитационное линзирование. Такой массивный и компактный объект, как галактика, может действовать как грубая линза, создавая искаженное, увеличенное изображение (или даже множество изображений) любого источника фонового излучения, который находится за ним. Такой объект делает это, искривляя пути световых лучей и другого электромагнитного излучения. Таким образом, если галактика находится на линии прямой видимости между Землей и каким-либо удаленным объектом, она будет отклонять световые лучи от объекта так, чтобы их можно было наблюдать [см. «Гравитационные линзы» Эдвина Л.Тернер; НАУЧНЫЙ АМЕРИКАН, июль 1988 г.]. За последнее десятилетие астрономы открыли более десятка гравитационных линз. Всегда обнаруживается, что объект за линзой имеет большее красное смещение, чем сама линза, что подтверждает качественное предсказание закона Хаббла.

Закон Хаббла имеет большое значение не только потому, что он описывает расширение Вселенной, но и потому, что его можно использовать для вычисления возраста космоса. Если быть точным, время, прошедшее с момента большого взрыва, является функцией текущего значения постоянной Хаббла и скорости ее изменения.Астрономы определили приблизительную скорость расширения, но никто еще не смог точно измерить второе значение.

Тем не менее, это количество можно оценить, зная среднюю плотность Вселенной. Можно ожидать, что из-за того, что гравитация оказывает силу, препятствующую расширению, галактики теперь будут стремиться расходиться медленнее, чем в прошлом. Таким образом, скорость изменения расширения связана с гравитационным притяжением Вселенной, установленным ее средней плотностью.Если это плотность видимого вещества внутри галактик и вокруг них, возраст Вселенной, вероятно, составляет от 12 до 20 миллиардов лет. (Диапазон учитывает неопределенность в скорости расширения.)

Тем не менее, многие исследователи считают, что плотность выше этого минимального значения. Так называемая темная материя будет иметь значение. Сильно защищенный аргумент гласит, что Вселенная достаточно плотна, чтобы в отдаленном будущем расширение замедлилось почти до нуля. При таком предположении возраст Вселенной уменьшается до диапазона от семи до 13 миллиардов лет.

ПЛОТНОСТЬ нейтронов и протонов во Вселенной определяет содержание определенных элементов. Для Вселенной с более высокой плотностью вычисленное содержание гелия мало отличается, а вычисленное содержание дейтерия значительно ниже. Заштрихованная область согласуется с наблюдениями, в диапазоне от содержания гелия в 24 процента до одной части 1010 для изотопа лития. Это количественное согласие - главный успех космологии большого взрыва.

Чтобы улучшить эти оценки, многие астрономы проводят интенсивные исследования по измерению расстояний до галактик и плотности Вселенной.Оценки времени расширения служат важным тестом для модели большого взрыва Вселенной. Если теория верна, все в видимой Вселенной должно быть моложе времени расширения, рассчитанного по закону Хаббла.

Эти две шкалы времени, по крайней мере, примерно совпадают. Например, возраст самых старых звезд в диске галактики Млечный Путь составляет около девяти миллиардов лет - оценка, полученная на основе скорости охлаждения белых карликов. Звезды в ореоле Млечного Пути несколько старше, около 15 миллиардов лет - величина, полученная на основе скорости потребления ядерного топлива в ядрах этих звезд.Возраст самых старых известных химических элементов также составляет приблизительно 15 миллиардов лет - число, полученное с помощью методов радиоактивного датирования. Работники лабораторий получили эти оценки возраста на основе атомной и ядерной физики. Примечательно, что их результаты согласуются, по крайней мере приблизительно, с возрастом, который астрономы определили, измерив космическое расширение.

Другая теория, теория устойчивого состояния, также успешно объясняет расширение и однородность Вселенной.В 1946 году три физика в Англии - Хойл, Герман Бонди и Томас Голд - предложили такую ​​космологию. Согласно их теории, Вселенная постоянно расширяется, а материя создается спонтанно, чтобы заполнить пустоты. Они предположили, что по мере того, как этот материал накапливается, он образует новые звезды, чтобы заменить старые. Эта гипотеза устойчивого состояния предсказывает, что ансамбли близких к нам галактик должны статистически выглядеть так же, как и далекие. Космология большого взрыва делает другое предсказание: если все галактики образовались давным-давно, далекие галактики должны выглядеть моложе ближайших, потому что свету от них требуется больше времени, чтобы добраться до нас.Такие галактики должны содержать больше недолговечных звезд и больше газа, из которого будут формироваться будущие поколения звезд.

Тест концептуально прост, но астрономам потребовались десятилетия, чтобы разработать детекторы, достаточно чувствительные для детального изучения далеких галактик. Когда астрономы исследуют близлежащие галактики, которые являются мощными излучателями радиоволн, они видят в оптическом диапазоне относительно круглые системы звезд. С другой стороны, далекие радиогалактики имеют удлиненную, а иногда и неправильную структуру.Более того, в большинстве далеких радиогалактик, в отличие от ближайших, распределение света имеет тенденцию совпадать с картиной радиоизлучения.

Аналогичным образом, когда астрономы изучают население массивных плотных скоплений галактик, они находят различия между близкими и далекими галактиками. Далекие скопления содержат голубоватые галактики, свидетельствующие о продолжающемся звездообразовании. Рядом похожие скопления содержат красноватые галактики, в которых активное звездообразование давно прекратилось.Наблюдения, сделанные с помощью космического телескопа Хаббла, подтверждают, что по крайней мере часть усиленного звездообразования в этих более молодых скоплениях может быть результатом столкновений между их галактиками-членами, процесс, который в настоящее время встречается гораздо реже.

ДИСТАНЦИОННЫЕ ГАЛАКТИКИ сильно отличаются от ближайших - наблюдение, которое показывает, что галактики произошли от более ранних, более неправильных форм. Среди галактик, ярких как в оптическом ( синий, ), так и в радио ( красный ) длинах волн, близкие галактики имеют тенденцию иметь гладкие эллиптические формы в оптическом диапазоне и очень вытянутые радиоизображения.По мере увеличения красного смещения и, следовательно, расстояния галактики имеют более неправильную удлиненную форму, которая кажется выровненной в оптическом и радиоволнах. Крайняя правая галактика видна такой, какой она была в 10 процентах от нынешнего возраста Вселенной. Изображения были собраны Пэт Маккарти из Института Карнеги.

Итак, если все галактики удаляются друг от друга и развиваются из более ранних форм, кажется логичным, что когда-то они были сгущены вместе в каком-то плотном море вещества и энергии.В самом деле, в 1927 году, еще до того, как о далеких галактиках стало известно много, бельгийский космолог и священник Жорж Лемэтр предположил, что расширение Вселенной может быть связано с чрезвычайно плотным состоянием, которое он назвал первобытным «суператомом». Он подумал, что, возможно, даже удастся обнаружить остаточное излучение первобытного атома. Но как бы выглядела эта радиационная подпись?

Когда Вселенная была очень молодой и горячей, излучение не могло распространяться очень далеко, не будучи поглощенным и испускаемым какой-либо частицей.Этот непрерывный обмен энергией поддерживал состояние теплового равновесия; в любом конкретном регионе вряд ли будет намного жарче или прохладнее, чем в среднем. Когда материя и энергия достигают такого состояния, результатом является так называемый тепловой спектр, где интенсивность излучения на каждой длине волны является определенной функцией температуры. Следовательно, излучение, возникающее в результате горячего Большого взрыва, можно распознать по его спектру.

Фактически, это тепловое космическое фоновое излучение было обнаружено.Работая над разработкой радара в 1940-х годах, Роберт Х. Дике, работавший тогда в Массачусетском технологическом институте, изобрел микроволновый радиометр - устройство, способное обнаруживать низкие уровни излучения. В 1960-х годах Bell Laboratories использовала радиометр в телескопе, который отслеживал первые спутники связи Echo-1 и Telstar. Инженер, создавший этот прибор, обнаружил, что он обнаруживает неожиданное излучение. Арно А. Пензиас и Роберт В. Уилсон идентифицировали этот сигнал как космическое фоновое излучение.Интересно, что Пензиас и Вильсон пришли к этой идее после того, как Дикке предложил использовать радиометр для поиска космического фона.

Астрономы очень подробно изучили это излучение с помощью спутника Cosmic Background Explorer (COBE) и ряда экспериментов с запуском ракет, воздушных шаров и земли. Космическое фоновое излучение имеет два отличительных свойства. Во-первых, он практически одинаков во всех направлениях. (Как сказал Джордж Ф.Лаборатория Смута Лоуренса Беркли и его группа обнаружили в 1992 году, что отклонение составляет всего одну часть на 100 000.) Интерпретация состоит в том, что излучение равномерно заполняет пространство, как и предсказывается в космологии большого взрыва. Во-вторых, спектр очень близок к спектру объекта, находящегося в тепловом равновесии при температуре 2,726 кельвина выше абсолютного нуля. Конечно, космическое фоновое излучение образовалось, когда Вселенная была намного горячее, чем 2,726 градуса, однако исследователи правильно предположили, что видимая температура излучения будет низкой.В 1930-х годах Ричард Толмен из Калифорнийского технологического института показал, что температура космического фона будет уменьшаться из-за расширения Вселенной.

Космическое фоновое излучение является прямым доказательством того, что Вселенная действительно расширилась из плотного горячего состояния, поскольку это условие необходимо для образования излучения. В плотной, горячей ранней Вселенной термоядерные реакции производили элементы тяжелее водорода, включая дейтерий, гелий и литий.Поразительно, что рассчитанная смесь легких элементов согласуется с наблюдаемыми содержаниями. То есть все свидетельства указывают на то, что легкие элементы образовались в горячей молодой Вселенной, тогда как более тяжелые элементы появились позже, как продукты термоядерных реакций, приводящих в действие звезды.

Теория происхождения легких элементов возникла в результате всплеска исследований, последовавших за окончанием Второй мировой войны. Джордж Гамов и аспирант Ральф А. Альфер из Университета Джорджа Вашингтона и Роберт Херман из Лаборатории прикладной физики Университета Джона Хопкинса и другие использовали данные ядерной физики, полученные во время войны, чтобы предсказать, какие ядерные процессы могли происходить в ранней Вселенной. и какие элементы могли быть произведены.Альфер и Герман также поняли, что остатки первоначального расширения все еще можно будет обнаружить в существующей вселенной.

Несмотря на то, что важные детали этой новаторской работы были ошибочными, она установила связь между ядерной физикой и космологией. Ученые продемонстрировали, что раннюю Вселенную можно рассматривать как разновидность термоядерного реактора. В результате физики теперь точно рассчитали содержание легких элементов, образовавшихся в результате Большого взрыва, и то, как эти количества изменились из-за последующих событий в межзвездной среде и ядерных процессов в звездах.

Наше понимание условий, которые преобладали в ранней Вселенной, не дает полного понимания того, как формировались галактики. Тем не менее, у нас есть немало кусочков головоломки. Гравитация вызывает рост флуктуаций плотности в распределении материи, потому что она сильнее замедляет расширение более плотных областей, заставляя их расти еще плотнее. Этот процесс наблюдается в росте ближайших скоплений галактик, и сами галактики, вероятно, были собраны таким же процессом в меньшем масштабе.

Росту структуры в ранней Вселенной препятствовало радиационное давление, но это изменилось, когда Вселенная расширилась примерно до 0,1 процента от своего нынешнего размера. В этот момент температура составляла около 3000 кельвинов, достаточно прохладно, чтобы позволить ионам и электронам объединиться с образованием нейтрального водорода и гелия. Нейтральное вещество могло проскальзывать сквозь излучение и образовывать газовые облака, которые могли коллапсировать в звездные скопления. Наблюдения показывают, что к тому времени, когда Вселенная достигла одной пятой своего нынешнего размера, материя собралась в газовые облака, достаточно большие, чтобы их можно было назвать молодыми галактиками.

Актуальная задача сейчас состоит в том, чтобы согласовать очевидную однородность ранней Вселенной с неровным распределением галактик в нынешней Вселенной. Астрономы знают, что плотность ранней Вселенной не сильно менялась, потому что они наблюдают лишь незначительные отклонения в космическом фоновом излучении. До сих пор было легко разработать теории, согласующиеся с доступными измерениями, но в настоящее время проводятся более важные испытания. В частности, разные теории образования галактик предсказывают совершенно разные флуктуации космического фонового излучения на угловых масштабах менее одного градуса.Измерения таких крошечных флуктуаций еще не проводились, но они могут быть выполнены в ходе проводимых сейчас экспериментов. Будет интересно узнать, выдержит ли какая-либо из рассматриваемых в настоящее время теорий образования галактик эти испытания.

Современная Вселенная предоставила широкие возможности для развития такой жизни, какой мы ее знаем - в той части Вселенной, которую мы можем наблюдать, существует около 100 миллиардов миллиардов звезд, похожих на Солнце. Космология большого взрыва, однако, подразумевает, что жизнь возможна только в течение ограниченного периода времени: Вселенная была слишком горячей в далеком прошлом, а ее ресурсы на будущее ограничены.Большинство галактик по-прежнему рождают новые звезды, но многие другие уже исчерпали запасы газа. Через тридцать миллиардов лет галактики станут намного темнее и заполнены мертвыми или умирающими звездами, поэтому будет гораздо меньше планет, способных поддерживать жизнь в том виде, в котором она существует сейчас.

Вселенная может расширяться бесконечно, и в этом случае все галактики и звезды в конечном итоге станут темными и холодными. Альтернативой этому сильному ознобу является большой хруст. Если масса Вселенной достаточно велика, гравитация в конечном итоге обратит расширение вспять, и вся материя и энергия воссоединятся.В течение следующего десятилетия, по мере того, как исследователи совершенствуют методы измерения массы Вселенной, мы можем узнать, идет ли нынешнее расширение к большому похолоданию или к большому сжатию.

В ближайшем будущем мы ожидаем, что новые эксперименты позволят лучше понять Большой взрыв. По мере того, как мы улучшаем измерения скорости расширения и возраста звезд, мы сможем подтвердить, что звезды действительно моложе расширяющейся Вселенной. Недавно построенные или строящиеся более крупные телескопы могут позволить нам увидеть, как масса Вселенной влияет на кривизну пространства-времени, что, в свою очередь, влияет на наши наблюдения далеких галактик.

Мы также продолжим изучать вопросы, которые космология большого взрыва не решает. Мы не знаем, почему произошел Большой взрыв или что могло существовать раньше. Мы не знаем, есть ли у нашей Вселенной братьев и сестер - другие расширяющиеся области, удаленные от того, что мы можем наблюдать. Мы не понимаем, почему фундаментальные константы природы имеют такие значения. Достижения в физике элементарных частиц подсказывают несколько интересных способов ответа на эти вопросы; задача состоит в том, чтобы найти экспериментальную проверку идей.

Продолжая дискуссии по таким вопросам космологии, следует иметь в виду, что все физические теории являются приближениями к реальности, которые могут потерпеть неудачу, если зайти слишком далеко. Физическая наука продвигается вперед за счет включения более ранних теорий, экспериментально подтвержденных, в более широкие и всеобъемлющие рамки. Теория большого взрыва подтверждается множеством доказательств: она объясняет космическое фоновое излучение, изобилие легких элементов и расширение Хаббла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *